» Articles » PMID: 32769990

Machine Learning-based Prediction of Acute Coronary Syndrome Using Only the Pre-hospital 12-lead Electrocardiogram

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Aug 10
PMID 32769990
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Prompt identification of acute coronary syndrome is a challenge in clinical practice. The 12-lead electrocardiogram (ECG) is readily available during initial patient evaluation, but current rule-based interpretation approaches lack sufficient accuracy. Here we report machine learning-based methods for the prediction of underlying acute myocardial ischemia in patients with chest pain. Using 554 temporal-spatial features of the 12-lead ECG, we train and test multiple classifiers on two independent prospective patient cohorts (n = 1244). While maintaining higher negative predictive value, our final fusion model achieves 52% gain in sensitivity compared to commercial interpretation software and 37% gain in sensitivity compared to experienced clinicians. Such an ultra-early, ECG-based clinical decision support tool, when combined with the judgment of trained emergency personnel, would help to improve clinical outcomes and reduce unnecessary costs in patients with chest pain.

Citing Articles

Artificial Intelligence in Clinics: Enhancing Cardiology Practice.

Sakamoto A, Nakamura Y, Sato E, Kagiyama N JMA J. 2025; 8(1):131-140.

PMID: 39926098 PMC: 11799705. DOI: 10.31662/jmaj.2024-0190.


Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome.

Bouzid Z, Sejdic E, Martin-Gill C, Faramand Z, Frisch S, Alrawashdeh M Eur Heart J. 2025; 46(10):943-954.

PMID: 39804231 PMC: 11887543. DOI: 10.1093/eurheartj/ehae880.


Unsupervised deep learning of electrocardiograms enables scalable human disease profiling.

Friedman S, Khurshid S, Venn R, Wang X, Diamant N, Di Achille P NPJ Digit Med. 2025; 8(1):23.

PMID: 39799251 PMC: 11724961. DOI: 10.1038/s41746-024-01418-9.


Smartwatch ECG and artificial intelligence in detecting acute coronary syndrome compared to traditional 12-lead ECG.

Choi J, Kim J, Spaccarotella C, Esposito G, Oh I, Cho Y Int J Cardiol Heart Vasc. 2024; 56:101573.

PMID: 39687687 PMC: 11648863. DOI: 10.1016/j.ijcha.2024.101573.


Self-template manufacturing of on-skin electrodes with 3D multi-channel structure for standard 3-limb-lead ECG suit.

Wang W, Lu L, Ma H, Li Z, Lu X, Xie Y Microsyst Nanoeng. 2024; 10(1):196.

PMID: 39681565 PMC: 11649698. DOI: 10.1038/s41378-024-00838-7.


References
1.
Kumar A, Cannon C . Acute coronary syndromes: diagnosis and management, part I. Mayo Clin Proc. 2009; 84(10):917-38. PMC: 2755812. DOI: 10.4065/84.10.917. View

2.
Al-Zaiti S, Martin-Gill C, Sejdic E, Alrawashdeh M, Callaway C . Rationale, development, and implementation of the Electrocardiographic Methods for the Prehospital Identification of Non-ST Elevation Myocardial Infarction Events (EMPIRE). J Electrocardiol. 2015; 48(6):921-6. DOI: 10.1016/j.jelectrocard.2015.08.014. View

3.
Al-Zaiti S, Faramand Z, Alrawashdeh M, Sereika S, Martin-Gill C, Callaway C . Comparison of clinical risk scores for triaging high-risk chest pain patients at the emergency department. Am J Emerg Med. 2018; 37(3):461-467. PMC: 6286698. DOI: 10.1016/j.ajem.2018.06.020. View

4.
Sharma L, Tripathy R, Dandapat S . Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction. IEEE Trans Biomed Eng. 2015; 62(7):1827-37. DOI: 10.1109/TBME.2015.2405134. View

5.
Sun L, Lu Y, Yang K, Li S . ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans Biomed Eng. 2012; 59(12):3348-56. DOI: 10.1109/TBME.2012.2213597. View