» Articles » PMID: 39661112

Serum Mac2-binding Protein Glycosylated Isomer (M2BPGi) As a Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma: ICAFs-derived M2BPGi Drives Tumor Invasion

Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Mac2-binding protein glycosylated isomer (M2BPGi), a known biomarker for liver fibrosis, is also elevated in other fibrotic tissues. However, its role in PDAC remains unexplored. This study investigates the potential of M2BPGi as a prognostic biomarker for PDAC and elucidates its role in cancer progression.

Methods: We analyzed serum M2BPGi levels in 83 PDAC patients and 60 healthy controls, examining the relationship with clinical outcomes. Tissue immunostaining and in vitro experiments were conducted to investigate M2BPGi-secreting cells and its role.

Results: Serum M2BPGi levels were significantly higher in PDAC patients than in controls (0.98 vs. 0.59, p < 0.0001). Notably, elevated serum M2BPGi was associated with worse progression-free survival (144 days vs. 260 days, p = 0.017) and overall survival (OS) (245 days vs. 541 days, p < 0.001) following chemotherapy. Multivariable Cox regression analysis further confirmed that a high serum M2BPGi level is an independent risk factor for OS (HR: 2.44, 95% CI 1.26-4.74, p = 0.008). Immunostaining revealed that M2BPGi is secreted by both cancer cells and cancer-associated fibroblasts (CAFs), with high M2BP expression in CAFs correlating with poor prognosis. Furthermore, M2BPGi-secreting CAFs exhibited characteristics of inflammatory CAFs. M2BPGi directly activated mTOR signaling and epithelial-mesenchymal transition in PDAC cells, enhancing their invasive and migratory capabilities.

Conclusions: Our findings identify M2BPGi as a promising prognostic biomarker for PDAC. Moreover, we demonstrate that inflammatory CAFs promote tumor invasion and contribute to poor outcomes by secreting M2BPGi, revealing a novel mechanism of PDAC progression.

References
1.
Bray F, Laversanne M, Sung H, Ferlay J, Siegel R, Soerjomataram I . Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3):229-263. DOI: 10.3322/caac.21834. View

2.
Park W, Chawla A, OReilly E . Pancreatic Cancer: A Review. JAMA. 2021; 326(9):851-862. PMC: 9363152. DOI: 10.1001/jama.2021.13027. View

3.
Rahib L, Smith B, Aizenberg R, Rosenzweig A, Fleshman J, Matrisian L . Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014; 74(11):2913-21. DOI: 10.1158/0008-5472.CAN-14-0155. View

4.
Erkan M, Hausmann S, Michalski C, Fingerle A, Dobritz M, Kleeff J . The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol. 2012; 9(8):454-67. DOI: 10.1038/nrgastro.2012.115. View

5.
Thomas D, Radhakrishnan P . Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019; 18(1):14. PMC: 6341551. DOI: 10.1186/s12943-018-0927-5. View