6.
Flynn J, GOLDSTEIN M, Triebold K, Koller B, Bloom B
. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992; 89(24):12013-7.
PMC: 50688.
DOI: 10.1073/pnas.89.24.12013.
View
7.
Flynn J, Chan J
. Immune cell interactions in tuberculosis. Cell. 2022; 185(25):4682-4702.
DOI: 10.1016/j.cell.2022.10.025.
View
8.
Ruibal P, Voogd L, Joosten S, Ottenhoff T
. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev. 2021; 301(1):30-47.
PMC: 8154655.
DOI: 10.1111/imr.12948.
View
9.
Chowdhury R, Valainis J, Dubey M, von Boehmer L, Sola E, Wilhelmy J
. NK-like CD8 γδ T cells are expanded in persistent infection. Sci Immunol. 2023; 8(81):eade3525.
PMC: 10408713.
DOI: 10.1126/sciimmunol.ade3525.
View
10.
Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day C, Perreau M
. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol. 2013; 43(6):1568-77.
PMC: 6535091.
DOI: 10.1002/eji.201243262.
View
11.
Paterson R, La Manna M, Arena De Souza V, Walker A, Gibbs-Howe D, Kulkarni R
. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2024; 121(19):e2318003121.
PMC: 11087797.
DOI: 10.1073/pnas.2318003121.
View
12.
Koh J, Kim D, Moon B, Shin E
. Human CD8 T-Cell Populations That Express Natural Killer Receptors. Immune Netw. 2023; 23(1):e8.
PMC: 9995994.
DOI: 10.4110/in.2023.23.e8.
View
13.
Maerz M, Cross D, Seshadri C
. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol. 2024; 102(6):474-486.
PMC: 11236517.
DOI: 10.1111/imcb.12751.
View
14.
La Manna M, Orlando V, Prezzemolo T, Di Carlo P, Cascio A, Delogu G
. HLA-E-restricted CD8 T Lymphocytes Efficiently Control and HIV-1 Coinfection. Am J Respir Cell Mol Biol. 2019; 62(4):430-439.
DOI: 10.1165/rcmb.2019-0261OC.
View
15.
Balin S, Pellegrini M, Klechevsky E, Won S, Weiss D, Choi A
. Human antimicrobial cytotoxic T lymphocytes, defined by NK receptors and antimicrobial proteins, kill intracellular bacteria. Sci Immunol. 2018; 3(26).
PMC: 6431239.
DOI: 10.1126/sciimmunol.aat7668.
View
16.
Napier R, Adams E, Gold M, Lewinsohn D
. The Role of Mucosal Associated Invariant T Cells in Antimicrobial Immunity. Front Immunol. 2015; 6:344.
PMC: 4492155.
DOI: 10.3389/fimmu.2015.00344.
View
17.
Winchell C, Nyquist S, Chao M, Maiello P, Myers A, Hopkins F
. CD8+ lymphocytes are critical for early control of tuberculosis in macaques. J Exp Med. 2023; 220(12).
PMC: 10579699.
DOI: 10.1084/jem.20230707.
View
18.
Stenger S, HANSON D, Teitelbaum R, Dewan P, Niazi K, Froelich C
. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998; 282(5386):121-5.
DOI: 10.1126/science.282.5386.121.
View
19.
Joosten S, van Meijgaarden K, van Weeren P, Kazi F, Geluk A, Savage N
. Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. PLoS Pathog. 2010; 6(2):e1000782.
PMC: 2829052.
DOI: 10.1371/journal.ppat.1000782.
View
20.
van Meijgaarden K, Haks M, Caccamo N, Dieli F, Ottenhoff T, Joosten S
. Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathog. 2015; 11(3):e1004671.
PMC: 4372528.
DOI: 10.1371/journal.ppat.1004671.
View