6.
Rodriguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano M, Lopez-Villegas E, Sanchez-Garcia F
. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2014; 145(2):213-24.
PMC: 4427386.
DOI: 10.1111/imm.12437.
View
7.
Ridker P, MacFadyen J, Everett B, Libby P, Thuren T, Glynn R
. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2017; 391(10118):319-328.
DOI: 10.1016/S0140-6736(17)32814-3.
View
8.
Doran A, Yurdagul Jr A, Tabas I
. Efferocytosis in health and disease. Nat Rev Immunol. 2019; 20(4):254-267.
PMC: 7667664.
DOI: 10.1038/s41577-019-0240-6.
View
9.
Wan W, Lionakis M, Liu Q, Roffe E, Murphy P
. Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovasc Res. 2012; 97(3):580-8.
PMC: 3567784.
DOI: 10.1093/cvr/cvs349.
View
10.
Doring Y, Drechsler M, Wantha S, Kemmerich K, Lievens D, Vijayan S
. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res. 2012; 110(8):1052-6.
DOI: 10.1161/CIRCRESAHA.112.265868.
View
11.
Kahlenberg J, Carmona-Rivera C, Smith C, Kaplan M
. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2012; 190(3):1217-26.
PMC: 3552129.
DOI: 10.4049/jimmunol.1202388.
View
12.
Gu L, Okada Y, Clinton S, Gerard C, Sukhova G, Libby P
. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998; 2(2):275-81.
DOI: 10.1016/s1097-2765(00)80139-2.
View
13.
van Leeuwen M, Gijbels M, Duijvestijn A, Smook M, van de Gaar M, Heeringa P
. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice. Arterioscler Thromb Vasc Biol. 2007; 28(1):84-9.
DOI: 10.1161/ATVBAHA.107.154807.
View
14.
Kierszenbaum F, Wirth J, McCann P, SJOERDSMA A
. Impairment of macrophage function by inhibitors of ornithine decarboxylase activity. Infect Immun. 1987; 55(10):2461-4.
PMC: 260730.
DOI: 10.1128/iai.55.10.2461-2464.1987.
View
15.
Williams J, Martel C, Potteaux S, Esaulova E, Ingersoll M, Elvington A
. Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic Plaques-Brief Report. Arterioscler Thromb Vasc Biol. 2018; 38(8):1702-1710.
PMC: 6202234.
DOI: 10.1161/ATVBAHA.118.311319.
View
16.
Thwe P, Pelgrom L, Cooper R, Beauchamp S, Reisz J, DAlessandro A
. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses. Cell Metab. 2017; 26(3):558-567.e5.
PMC: 5657596.
DOI: 10.1016/j.cmet.2017.08.012.
View
17.
Sluimer J, Gasc J, van Wanroij J, Kisters N, Groeneweg M, Sollewijn Gelpke M
. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008; 51(13):1258-65.
DOI: 10.1016/j.jacc.2007.12.025.
View
18.
Bischoff E, Daige C, Petrowski M, Dedman H, Pattison J, Juliano J
. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice. J Lipid Res. 2010; 51(5):900-6.
PMC: 2853457.
DOI: 10.1194/jlr.M900096.
View
19.
Khan M, Palaniyar N
. Transcriptional firing helps to drive NETosis. Sci Rep. 2017; 7:41749.
PMC: 5296899.
DOI: 10.1038/srep41749.
View
20.
Covarrubias A, Aksoylar H, Yu J, Snyder N, Worth A, Iyer S
. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife. 2016; 5.
PMC: 4769166.
DOI: 10.7554/eLife.11612.
View