6.
Rosati D, Giordano A
. Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance. Biochem Pharmacol. 2021; 195:114811.
DOI: 10.1016/j.bcp.2021.114811.
View
7.
Miyoshi I, Kubonishi I, Yoshimoto S, Hikita T, Dabasaki H, Tanaka T
. Characteristics of a brain lymphoma cell line derived from primary intracranial lymphoma. Cancer. 1982; 49(3):456-9.
DOI: 10.1002/1097-0142(19820201)49:3<456::aid-cncr2820490311>3.0.co;2-k.
View
8.
Hayano A, Takashima Y, Yamanaka R
. Cell-type-specific sensitivity of bortezomib in the methotrexate-resistant primary central nervous system lymphoma cells. Int J Clin Oncol. 2019; 24(9):1020-1029.
DOI: 10.1007/s10147-019-01451-9.
View
9.
Takashima Y, Hayano A, Yamanaka R
. Metabolome Analysis Reveals Excessive Glycolysis via PI3K/AKT/mTOR and RAS/MAPK Signaling in Methotrexate-Resistant Primary CNS Lymphoma-Derived Cells. Clin Cancer Res. 2020; 26(11):2754-2766.
DOI: 10.1158/1078-0432.CCR-18-3851.
View
10.
Hao Y, Hao S, Andersen-Nissen E, Mauck 3rd W, Zheng S, Butler A
. Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13):3573-3587.e29.
PMC: 8238499.
DOI: 10.1016/j.cell.2021.04.048.
View
11.
Livak K, Schmittgen T
. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2002; 25(4):402-8.
DOI: 10.1006/meth.2001.1262.
View
12.
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B
. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017; 7(3):339-348.
PMC: 5651054.
DOI: 10.15171/apb.2017.041.
View
13.
Skums P, Tsyvina V, Zelikovsky A
. Inference of clonal selection in cancer populations using single-cell sequencing data. Bioinformatics. 2019; 35(14):i398-i407.
PMC: 6612866.
DOI: 10.1093/bioinformatics/btz392.
View
14.
Raj A, van Oudenaarden A
. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008; 135(2):216-26.
PMC: 3118044.
DOI: 10.1016/j.cell.2008.09.050.
View
15.
Hayford C, Tyson D, Robbins 3rd C, Frick P, Quaranta V, Harris L
. An in vitro model of tumor heterogeneity resolves genetic, epigenetic, and stochastic sources of cell state variability. PLoS Biol. 2021; 19(6):e3000797.
PMC: 8195356.
DOI: 10.1371/journal.pbio.3000797.
View
16.
Lathia J, Liu H
. Overview of Cancer Stem Cells and Stemness for Community Oncologists. Target Oncol. 2017; 12(4):387-399.
PMC: 5524873.
DOI: 10.1007/s11523-017-0508-3.
View
17.
Karaayvaz M, Cristea S, Gillespie S, Patel A, Mylvaganam R, Luo C
. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018; 9(1):3588.
PMC: 6123496.
DOI: 10.1038/s41467-018-06052-0.
View
18.
Kim K, Lee H, Lee H, Kim S, Seo Y, Chung W
. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 2015; 16:127.
PMC: 4506401.
DOI: 10.1186/s13059-015-0692-3.
View
19.
Mitra A, Mukherjee U, Harding T, Jang J, Stessman H, Li Y
. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia. 2015; 30(5):1094-102.
DOI: 10.1038/leu.2015.361.
View
20.
Yang L, Zhang X, Hou Q, Huang M, Zhang H, Jiang Z
. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns. BMC Genomics. 2019; 20(1):611.
PMC: 6659267.
DOI: 10.1186/s12864-019-5970-0.
View