» Articles » PMID: 39634146

Observation of Ultra-large Rabi Splitting in the Plasmon-exciton Polaritons at Room Temperature

Overview
Journal Nanophotonics
Publisher De Gruyter
Date 2024 Dec 5
PMID 39634146
Authors
Affiliations
Soon will be listed here.
Abstract

Modifying the light-matter interactions in the plasmonic structures and the two-dimensional (2D) materials not only advances the deeper understanding of the fundamental studies of many-body physics but also provides the opportunities for exploration of novel 2D plasmonic polaritonic devices. Here, we report the plasmon-exciton coupling in the hybrid system with a plasmonic metasurface which can confine the electric field in an extremely compact mode volume. Because of the 2D feature of the designed and fabricated Al plasmonic metasurface, the confined electronic field is distributed in the plane with the same orientation as that of the exciton dipole moment in the transition metal dichalcogenides monolayers. By finely tuning the geometric size of the plasmonic nanostructures, we can significantly modify the dispersion relation of the coupled plasmon and the exciton. Our system shows a strong coupling behavior with an achieved Rabi splitting up to ∼200 meV at room temperature, in ambient conditions. The effective tailoring of the plasmon-exciton coupling with the plasmonic metasurfaces provides the testing platform for studying the quantum electromagnetics at the subwavelength scale as well as exploring plasmonic polariton Bose-Einstein condensation at room temperature.

Citing Articles

MnGaS and MnAlSe van der Waals Chalcogenides: A Source of Atomically Thin Nanomaterials.

Chernoukhov I, Bogach A, Cherednichenko K, Gashigullin R, Shevelkov A, Verchenko V Molecules. 2024; 29(9).

PMID: 38731517 PMC: 11085105. DOI: 10.3390/molecules29092026.


Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra.

Greten L, Salzwedel R, Gode T, Greten D, Reich S, Hughes S ACS Photonics. 2024; 11(4):1396-1411.

PMID: 38645994 PMC: 11027155. DOI: 10.1021/acsphotonics.3c01208.


Ultra-Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSiN and WSiN.

Zhang J, Xia Y, Peng L, Zhang Y, Li B, Shu L Adv Sci (Weinh). 2024; 11(18):e2307691.

PMID: 38454650 PMC: 11095159. DOI: 10.1002/advs.202307691.

References
1.
Wen J, Wang H, Wang W, Deng Z, Zhuang C, Zhang Y . Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. Nano Lett. 2017; 17(8):4689-4697. DOI: 10.1021/acs.nanolett.7b01344. View

2.
Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012; 7(11):699-712. DOI: 10.1038/nnano.2012.193. View

3.
Ai R, Xia X, Zhang H, Chui K, Wang J . Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS Monolayer and Multilayer. ACS Nano. 2023; 17(3):2356-2367. PMC: 9933610. DOI: 10.1021/acsnano.2c09099. View

4.
Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z . Plasmonic computing of spatial differentiation. Nat Commun. 2017; 8:15391. PMC: 5454537. DOI: 10.1038/ncomms15391. View

5.
Zhu X, Xie F, Shi L, Liu X, Mortensen N, Xiao S . Broadband enhancement of spontaneous emission in a photonic-plasmonic structure. Opt Lett. 2012; 37(11):2037-9. DOI: 10.1364/OL.37.002037. View