» Articles » PMID: 23132225

Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2012 Nov 8
PMID 23132225
Citations 1340
Authors
Affiliations
Soon will be listed here.
Abstract

The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

Citing Articles

Environmental implications of SiBN nanoflakes in pharmaceutical pollutant detection and removal: insights from first-principle calculations.

Elbendary N, Abdelsalam H, Ibrahim M, Tawfik W, Khalil M Sci Rep. 2025; 15(1):8555.

PMID: 40075105 PMC: 11904242. DOI: 10.1038/s41598-025-91078-w.


Benchmarking the high conductive two-dimensional layered structured NbS, ZrS, ReS and NbSe materials with zero energy bandgap ( ) for photocatalytic application: a DFT study.

Jameel M, Yasin A, Tuama A, Jabbar A, Kousar S, Mayzan M R Soc Open Sci. 2025; 12(3):241560.

PMID: 40061220 PMC: 11888576. DOI: 10.1098/rsos.241560.


A review of high-entropy materials with their unique applications.

Ren J, Kumkale V, Hou H, Kadam V, Jagtap C, Lokhande P Adv Compos Hybrid Mater. 2025; 8(2):195.

PMID: 40046678 PMC: 11876289. DOI: 10.1007/s42114-025-01275-4.


Carborane Nanomembranes.

Frey M, Picker J, Neumann C, Visnak J, Machacek J, Tok O ACS Nano. 2025; 19(8):8131-8141.

PMID: 39968860 PMC: 11887487. DOI: 10.1021/acsnano.4c16611.


Exploring the Stability and Electronic Properties of Janus TMCSe Monolayers via DFT Calculations.

Campos Ortiz L, Paez Ornelas J, Alvarado Leal L, Fernandez Escamilla H, Martinez Huerta A, Perez Tijerina E ACS Omega. 2025; 10(5):4801-4808.

PMID: 39959085 PMC: 11822503. DOI: 10.1021/acsomega.4c10022.


References
1.
Lu W, Lieber C . Nanoelectronics from the bottom up. Nat Mater. 2007; 6(11):841-50. DOI: 10.1038/nmat2028. View

2.
Yoon Y, Ganapathi K, Salahuddin S . How good can monolayer MoS₂ transistors be?. Nano Lett. 2011; 11(9):3768-73. DOI: 10.1021/nl2018178. View

3.
Li H, Yin Z, He Q, Li H, Huang X, Lu G . Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small. 2011; 8(1):63-7. DOI: 10.1002/smll.201101016. View

4.
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A . Single-layer MoS2 transistors. Nat Nanotechnol. 2011; 6(3):147-50. DOI: 10.1038/nnano.2010.279. View

5.
Polman A, Atwater H . Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater. 2012; 11(3):174-7. DOI: 10.1038/nmat3263. View