6.
Grams M, Sang Y, Ballew S, Matsushita K, Astor B, Carrero J
. Evaluating Glomerular Filtration Rate Slope as a Surrogate End Point for ESKD in Clinical Trials: An Individual Participant Meta-Analysis of Observational Data. J Am Soc Nephrol. 2019; 30(9):1746-1755.
PMC: 6727262.
DOI: 10.1681/ASN.2019010008.
View
7.
Boucquemont J, Heinze G, Jager K, Oberbauer R, Leffondre K
. Regression methods for investigating risk factors of chronic kidney disease outcomes: the state of the art. BMC Nephrol. 2014; 15:45.
PMC: 4004351.
DOI: 10.1186/1471-2369-15-45.
View
8.
Leffondre K, Boucquemont J, Tripepi G, Stel V, Heinze G, Dunkler D
. Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches. Nephrol Dial Transplant. 2014; 30(8):1237-43.
DOI: 10.1093/ndt/gfu320.
View
9.
Qiao Y, Shin J, Chen T, Inker L, Coresh J, Alexander G
. Association Between Renin-Angiotensin System Blockade Discontinuation and All-Cause Mortality Among Persons With Low Estimated Glomerular Filtration Rate. JAMA Intern Med. 2020; 180(5):718-726.
PMC: 7063544.
DOI: 10.1001/jamainternmed.2020.0193.
View
10.
Inker L, Collier W, Greene T, Miao S, Chaudhari J, Appel G
. A meta-analysis of GFR slope as a surrogate endpoint for kidney failure. Nat Med. 2023; 29(7):1867-1876.
DOI: 10.1038/s41591-023-02418-0.
View
11.
Zeng W, Beyene H, Kuokkanen M, Miao G, Magliano D, Umans J
. Lipidomic profiling in the Strong Heart Study identified American Indians at risk of chronic kidney disease. Kidney Int. 2022; 102(5):1154-1166.
PMC: 10753995.
DOI: 10.1016/j.kint.2022.06.023.
View
12.
Yoshioka K, Hirakawa Y, Kurano M, Ube Y, Ono Y, Kojima K
. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. 2021; 101(3):510-526.
DOI: 10.1016/j.kint.2021.10.039.
View
13.
Hirakawa Y, Yoshioka K, Kojima K, Yamashita Y, Shibahara T, Wada T
. Potential progression biomarkers of diabetic kidney disease determined using comprehensive machine learning analysis of non-targeted metabolomics. Sci Rep. 2022; 12(1):16287.
PMC: 9523033.
DOI: 10.1038/s41598-022-20638-1.
View
14.
Lanktree M, Theriault S, Walsh M, Pare G
. HDL Cholesterol, LDL Cholesterol, and Triglycerides as Risk Factors for CKD: A Mendelian Randomization Study. Am J Kidney Dis. 2017; 71(2):166-172.
DOI: 10.1053/j.ajkd.2017.06.011.
View
15.
Zheng J, Zhang Y, Rasheed H, Walker V, Sugawara Y, Li J
. Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease. Int J Epidemiol. 2022; 50(6):1995-2010.
PMC: 8743120.
DOI: 10.1093/ije/dyab203.
View
16.
Wang Y, Zhang L, Zhang W, Tang M, Cui H, Wu X
. Understanding the relationship between circulating lipids and risk of chronic kidney disease: a prospective cohort study and large-scale genetic analyses. J Transl Med. 2023; 21(1):671.
PMC: 10537816.
DOI: 10.1186/s12967-023-04509-5.
View
17.
Park S, Lee S, Kim Y, Cho S, Huh H, Kim K
. Mendelian randomization reveals causal effects of kidney function on various biochemical parameters. Commun Biol. 2022; 5(1):713.
PMC: 9293908.
DOI: 10.1038/s42003-022-03659-4.
View
18.
Deng L, Hoh B, Lu D, Saw W, Ong R, Kasturiratne A
. Dissecting the genetic structure and admixture of four geographical Malay populations. Sci Rep. 2015; 5:14375.
PMC: 4585825.
DOI: 10.1038/srep14375.
View
19.
Wang J, Liu J, Gurung R, Liu S, Lee J, M Y
. Clinical variable-based cluster analysis identifies novel subgroups with a distinct genetic signature, lipidomic pattern and cardio-renal risks in Asian patients with recent-onset type 2 diabetes. Diabetologia. 2022; 65(12):2146-2156.
PMC: 9630229.
DOI: 10.1007/s00125-022-05741-2.
View
20.
Luo M, Tan L, Sim X, Ng M, van Dam R, Tai E
. Cohort profile: the Singapore diabetic cohort study. BMJ Open. 2020; 10(5):e036443.
PMC: 7264641.
DOI: 10.1136/bmjopen-2019-036443.
View