» Articles » PMID: 39609696

Inhibition of the E3 Ligase UBR5 Stabilizes TERT and Protects Vascular Organoids from Oxidative Stress

Overview
Journal J Transl Med
Publisher Biomed Central
Date 2024 Nov 28
PMID 39609696
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Excessive oxidative stress is known to cause endothelial dysfunction and drive cardiovascular diseases (CVD). While telomerase reverse transcriptase (TERT) shows protective effects against oxidative stress in rodents and is associated to human flow-mediated dilation in CVD, its regulatory mechanisms in human vascular systems under pathological oxidative stress require further investigation.

Methods: Human induced pluripotent stem cells (hiPSCs) were used to create vascular organoids (VOs). These VOs and human umbilical vein endothelial cells (HUVECs) were subjected to oxidative stress through both hydrogen peroxide (HO) and oxidized low-density lipoprotein (oxLDL) models. The effects of TERT overexpression by inhibition of the ubiquitin protein ligase E3 component N-recognin 5 (UBR5) on reactive oxygen species (ROS)-induced vascular injury and cellular senescence were assessed using neovascular sprouting assays, senescence-associated β-galactosidase (SA-β-Gal) staining, and senescence-associated secretory phenotype (SASP) assays.

Results: ROS significantly impaired VO development and endothelial progenitor cell (EPC) angiogenesis, evidenced by reduced neovascular sprouting and increased senescence markers, including elevated SA-β-Gal activity and SASP-related cytokine levels. Overexpression of TERT counteracted these effects, restoring VO development and EPC function. Immunoprecipitation-mass spectrometry identified UBR5 as a critical TERT regulator, facilitating its degradation. Inhibition of UBR5 stabilized TERT, improving VO angiogenic capacity, and reducing SA-β-Gal activity and SASP cytokine levels.

Conclusions: Inhibiting UBR5 stabilizes TERT, which preserves EPC angiogenic capacity, reduces VO impairment, and delays endothelial cell senescence under oxidative stress. These findings highlight the potential of targeting UBR5 to enhance vascular health in oxidative stress-related conditions.

References
1.
Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa S, Cenic-Milosevic D . Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci. 2014; 52(2):70-85. DOI: 10.3109/10408363.2014.992063. View

2.
Shokolenko I, Venediktova N, Bochkareva A, Wilson G, Alexeyev M . Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009; 37(8):2539-48. PMC: 2677867. DOI: 10.1093/nar/gkp100. View

3.
Wang X, Guo Y, Cui T, Zhang T, Hu W, Liu R . Telomerase reverse transcriptase restores pancreatic microcirculation profiles and attenuates endothelial dysfunction by inhibiting mitochondrial superoxide production: A potential target for acute pancreatitis therapy. Biomed Pharmacother. 2023; 167:115576. DOI: 10.1016/j.biopha.2023.115576. View

4.
Zhang Y, Murugesan P, Huang K, Cai H . NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2019; 17(3):170-194. PMC: 7880919. DOI: 10.1038/s41569-019-0260-8. View

5.
Ale-Agha N, Jakobs P, Goy C, Zurek M, Rosen J, Dyballa-Rukes N . Mitochondrial Telomerase Reverse Transcriptase Protects From Myocardial Ischemia/Reperfusion Injury by Improving Complex I Composition and Function. Circulation. 2021; 144(23):1876-1890. DOI: 10.1161/CIRCULATIONAHA.120.051923. View