6.
Konig L, Renner B
. Boosting healthy food choices by meal colour variety: results from two experiments and a just-in-time Ecological Momentary Intervention. BMC Public Health. 2019; 19(1):975.
PMC: 6647103.
DOI: 10.1186/s12889-019-7306-z.
View
7.
Shoneye C, Kwasnicka D, Mullan B, Pollard C, Boushey C, Kerr D
. Dietary assessment methods used in adult digital weight loss interventions: A systematic literature review. J Hum Nutr Diet. 2022; 36(3):997-1010.
DOI: 10.1111/jhn.13101.
View
8.
Boushey C, Spoden M, Zhu F, Delp E, Kerr D
. New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods. Proc Nutr Soc. 2016; 76(3):283-294.
DOI: 10.1017/S0029665116002913.
View
9.
Fallaize R, Zenun Franco R, Hwang F, Lovegrove J
. Evaluation of the eNutri automated personalised nutrition advice by users and nutrition professionals in the UK. PLoS One. 2019; 14(4):e0214931.
PMC: 6447217.
DOI: 10.1371/journal.pone.0214931.
View
10.
Feller D, Burgermaster M, Levine M, Smaldone A, Davidson P, Albers D
. A visual analytics approach for pattern-recognition in patient-generated data. J Am Med Inform Assoc. 2018; 25(10):1366-1374.
PMC: 6188507.
DOI: 10.1093/jamia/ocy054.
View
11.
Konig L, Van Emmenis M, Nurmi J, Kassavou A, Sutton S
. Characteristics of smartphone-based dietary assessment tools: a systematic review. Health Psychol Rev. 2021; 16(4):526-550.
DOI: 10.1080/17437199.2021.2016066.
View
12.
Ng A, Kornfield R, Schueller S, Zalta A, Brennan M, Reddy M
. Provider Perspectives on Integrating Sensor-Captured Patient-Generated Data in Mental Health Care. Proc ACM Hum Comput Interact. 2021; 3(CSCW).
PMC: 7877802.
DOI: 10.1145/3359217.
View
13.
Wang Y, He Y, Boushey C, Zhu F, Delp E
. Context Based Image Analysis With Application in Dietary Assessment and Evaluation. Multimed Tools Appl. 2018; 77(15):19769-19794.
PMC: 6127862.
DOI: 10.1007/s11042-017-5346-x.
View
14.
Vasiloglou M, Van der Horst K, Stathopoulou T, Jaeggi M, Tedde G, Lu Y
. The Human Factor in Automated Image-Based Nutrition Apps: Analysis of Common Mistakes Using the goFOOD Lite App. JMIR Mhealth Uhealth. 2021; 9(1):e24467.
PMC: 7840289.
DOI: 10.2196/24467.
View
15.
Burgermaster M, Son J, Davidson P, Smaldone A, Kuperman G, Feller D
. A new approach to integrating patient-generated data with expert knowledge for personalized goal setting: A pilot study. Int J Med Inform. 2020; 139:104158.
PMC: 7332366.
DOI: 10.1016/j.ijmedinf.2020.104158.
View
16.
He H, Kong F, Tan J
. DietCam: Multiview Food Recognition Using a Multikernel SVM. IEEE J Biomed Health Inform. 2015; 20(3):848-855.
DOI: 10.1109/JBHI.2015.2419251.
View
17.
Bi C, Xing G, Hao T, Huh J, Peng W, Ma M
. FamilyLog: A Mobile System for Monitoring Family Mealtime Activities. Proc IEEE Int Conf Pervasive Comput Commun. 2017; 2017:21-30.
PMC: 5558883.
DOI: 10.1109/PERCOM.2017.7917847.
View
18.
Simpson A, Gemming L, Baker D, Braakhuis A
. Do Image-Assisted Mobile Applications Improve Dietary Habits, Knowledge, and Behaviours in Elite Athletes? A Pilot Study. Sports (Basel). 2018; 5(3).
PMC: 5968953.
DOI: 10.3390/sports5030060.
View
19.
Chung C, Agapie E, Schroeder J, Mishra S, Fogarty J, Munson S
. When Personal Tracking Becomes Social: Examining the Use of Instagram for Healthy Eating. Proc SIGCHI Conf Hum Factor Comput Syst. 2017; 2017:1674-1687.
PMC: 5432132.
DOI: 10.1145/3025453.3025747.
View
20.
Fontana J, Pan Z, Sazonov E, McCrory M, Thomas J, McGrane K
. Reproducibility of Dietary Intake Measurement From Diet Diaries, Photographic Food Records, and a Novel Sensor Method. Front Nutr. 2020; 7:99.
PMC: 7372708.
DOI: 10.3389/fnut.2020.00099.
View