6.
Shin H
. Deep convolutional neural network-based signal quality assessment for photoplethysmogram. Comput Biol Med. 2022; 145:105430.
DOI: 10.1016/j.compbiomed.2022.105430.
View
7.
Dao D, Salehizadeh S, Noh Y, Chong J, Cho C, McManus D
. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. IEEE J Biomed Health Inform. 2017; 21(5):1242-1253.
DOI: 10.1109/JBHI.2016.2612059.
View
8.
Alian A, Shelley K
. Photoplethysmography. Best Pract Res Clin Anaesthesiol. 2014; 28(4):395-406.
DOI: 10.1016/j.bpa.2014.08.006.
View
9.
Faust O, Yu W, Rajendra Acharya U
. The role of real-time in biomedical science: a meta-analysis on computational complexity, delay and speedup. Comput Biol Med. 2015; 58:73-84.
DOI: 10.1016/j.compbiomed.2014.12.024.
View
10.
Chong J, Dao D, Salehizadeh S, McManus D, Darling C, Chon K
. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection. Ann Biomed Eng. 2014; 42(11):2238-50.
DOI: 10.1007/s10439-014-1080-y.
View
11.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R
. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20.
DOI: 10.1161/01.cir.101.23.e215.
View
12.
Cerny Oliveira L, Lai Z, Geng W, Siefkes H, Chuah C
. A Machine Learning Driven Pipeline for Automated Photoplethysmogram Signal Artifact Detection. IEEE Int Conf Connect Health Appl Syst Eng Technol. 2022; 2021:149-154.
PMC: 8893231.
DOI: 10.1109/chase52844.2021.00035.
View
13.
Hayes M, Smith P
. A new method for pulse oximetry possessing inherent insensitivity to artifact. IEEE Trans Biomed Eng. 2001; 48(4):452-61.
DOI: 10.1109/10.915711.
View
14.
Zhang Y, Song S, Vullings R, Biswas D, Simoes-Capela N, Helleputte N
. Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors (Basel). 2019; 19(3).
PMC: 6387309.
DOI: 10.3390/s19030673.
View
15.
Vabalas A, Gowen E, Poliakoff E, Casson A
. Machine learning algorithm validation with a limited sample size. PLoS One. 2019; 14(11):e0224365.
PMC: 6837442.
DOI: 10.1371/journal.pone.0224365.
View
16.
Hartmann V, Liu H, Chen F, Qiu Q, Hughes S, Zheng D
. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site. Front Physiol. 2019; 10:198.
PMC: 6412091.
DOI: 10.3389/fphys.2019.00198.
View
17.
Goh C, Tan L, Lovell N, Ng S, Tan M, Lim E
. Robust PPG motion artifact detection using a 1-D convolution neural network. Comput Methods Programs Biomed. 2020; 196:105596.
DOI: 10.1016/j.cmpb.2020.105596.
View
18.
Such O
. Motion tolerance in wearable sensors--the challenge of motion artifact. Annu Int Conf IEEE Eng Med Biol Soc. 2007; 2007:1542-5.
DOI: 10.1109/IEMBS.2007.4352597.
View
19.
Sabeti E, Reamaroon N, Mathis M, Gryak J, Sjoding M, Najarian K
. Signal quality measure for pulsatile physiological signals using morphological features: Applications in reliability measure for pulse oximetry. Inform Med Unlocked. 2020; 16.
PMC: 7453727.
DOI: 10.1016/j.imu.2019.100222.
View
20.
Reiss A, Indlekofer I, Schmidt P, Van Laerhoven K
. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Sensors (Basel). 2019; 19(14).
PMC: 6679242.
DOI: 10.3390/s19143079.
View