6.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M
. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015; 44(D1):D457-62.
PMC: 4702792.
DOI: 10.1093/nar/gkv1070.
View
7.
Liu B, Pop M
. ARDB--Antibiotic Resistance Genes Database. Nucleic Acids Res. 2008; 37(Database issue):D443-7.
PMC: 2686595.
DOI: 10.1093/nar/gkn656.
View
8.
Hayward A
. Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. Annu Rev Phytopathol. 1991; 29:65-87.
DOI: 10.1146/annurev.py.29.090191.000433.
View
9.
Chen L, Zheng D, Liu B, Yang J, Jin Q
. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2015; 44(D1):D694-7.
PMC: 4702877.
DOI: 10.1093/nar/gkv1239.
View
10.
Zhao Q, Geng M, Xia C, Lei T, Wang J, Cao C
. Identification, genetic diversity, and pathogenicity of Ralstonia pseudosolanacearum causing cigar tobacco bacterial wilt in China. FEMS Microbiol Ecol. 2023; 99(3).
DOI: 10.1093/femsec/fiad018.
View
11.
Sharma P, Johnson M, Mazloom R, Allen C, Heath L, Lowe-Power T
. Meta-analysis of the species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Microb Genom. 2022; 8(3).
PMC: 9176288.
DOI: 10.1099/mgen.0.000791.
View
12.
Galperin M, Wolf Y, Makarova K, Vera Alvarez R, Landsman D, Koonin E
. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2020; 49(D1):D274-D281.
PMC: 7778934.
DOI: 10.1093/nar/gkaa1018.
View
13.
Castillo J, Greenberg J
. Evolutionary dynamics of Ralstonia solanacearum. Appl Environ Microbiol. 2006; 73(4):1225-38.
PMC: 1828673.
DOI: 10.1128/AEM.01253-06.
View
14.
Shi L, Shi W, Qiu Z, Yan S, Liu Z, Cao B
. CaMAPK1 Plays a Vital Role in the Regulation of Resistance to Infection and Tolerance to Heat Stress. Plants (Basel). 2024; 13(13).
PMC: 11243954.
DOI: 10.3390/plants13131775.
View
15.
Geng R, Cheng L, Cao C, Liu Z, Liu D, Xiao Z
. Comprehensive Analysis Reveals the Genetic and Pathogenic Diversity of Species Complex and Benefits Its Taxonomic Classification. Front Microbiol. 2022; 13:854792.
PMC: 9121018.
DOI: 10.3389/fmicb.2022.854792.
View
16.
Jain C, Rodriguez-R L, Phillippy A, Konstantinidis K, Aluru S
. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018; 9(1):5114.
PMC: 6269478.
DOI: 10.1038/s41467-018-07641-9.
View
17.
Xiao Z, Liu Z, Zhang H, Yang A, Cheng L, Liu D
. Transcriptomics and virus-induced gene silencing identify defence-related genes during Ralstonia solanacearum infection in resistant and susceptible tobacco. Genomics. 2024; 116(2):110784.
DOI: 10.1016/j.ygeno.2024.110784.
View
18.
Vargas W, Martin J, Rech G, Rivera L, Benito E, Diaz-Minguez J
. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol. 2012; 158(3):1342-58.
PMC: 3291271.
DOI: 10.1104/pp.111.190397.
View
19.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A
. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9):1297-303.
PMC: 2928508.
DOI: 10.1101/gr.107524.110.
View
20.
Tan X, Dai X, Chen T, Wu Y, Yang D, Zheng Y
. Complete Genome Sequence Analysis of Strain PeaFJ1 Provides Insights Into Its Strong Virulence in Peanut Plants. Front Microbiol. 2022; 13:830900.
PMC: 8904134.
DOI: 10.3389/fmicb.2022.830900.
View