» Articles » PMID: 39596185

Nuclear MTORC1 Live-Cell Sensor NTORSEL Reports Differential Nuclear MTORC1 Activity in Cell Lines

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2024 Nov 27
PMID 39596185
Authors
Affiliations
Soon will be listed here.
Abstract

The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well understood, primarily due to limited tools for monitoring mTORC1 activity in the nucleus. In this study, we developed a genetically encoded nmTORC1 sensor, termed nTORSEL, based on the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4EBP1) by mTORC1 within the nucleus. nTORSEL, like its predecessor TORSEL, exhibits a fluorescent punctate pattern in the nucleus through multivalent protein-protein interactions between oligomerized 4EBP1 and eIF4E when nmTORC1 activity is low. We validated nTORSEL using biochemical analyses and imaging techniques across representative cell lines with varying levels of nmTORC1 activity. Notably, nTORSEL specifically detects physiological, pharmacological, and genetic inhibition of nmTORC1 in mouse embryonic fibroblast (MEF) cells but not in HEK293T cells. Therefore, nTORSEL is an effective tool for investigating nuclear mTORC1 signaling in cell lines.

References
1.
Back J, Kim A . The expanding relevance of nuclear mTOR in carcinogenesis. Cell Cycle. 2011; 10(22):3849-52. PMC: 3356804. DOI: 10.4161/cc.10.22.18329. View

2.
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S . TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci. 2024; 14(1):68. PMC: 11143692. DOI: 10.1186/s13578-024-01250-4. View

3.
Lawrence R, Zoncu R . The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 2019; 21(2):133-142. DOI: 10.1038/s41556-018-0244-7. View

4.
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X . Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci. 2024; 353:122918. DOI: 10.1016/j.lfs.2024.122918. View

5.
Sancak Y, Peterson T, Shaul Y, Lindquist R, Thoreen C, Bar-Peled L . The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008; 320(5882):1496-501. PMC: 2475333. DOI: 10.1126/science.1157535. View