6.
Lerner U, Johansson L, Ranjso M, Rosenquist J, Reinholt F, Grubb A
. Cystatin C, and inhibitor of bone resorption produced by osteoblasts. Acta Physiol Scand. 1997; 161(1):81-92.
DOI: 10.1046/j.1365-201X.1997.d01-1933.x.
View
7.
Kaspiris A, Hadjimichael A, Vasiliadis E, Papachristou D, Giannoudis P, Panagiotopoulos E
. Therapeutic Efficacy and Safety of Osteoinductive Factors and Cellular Therapies for Long Bone Fractures and Non-Unions: A Meta-Analysis and Systematic Review. J Clin Med. 2022; 11(13).
PMC: 9267779.
DOI: 10.3390/jcm11133901.
View
8.
Ding Z, Lin Y, Gan Y, Tang T
. Molecular pathogenesis of fracture nonunion. J Orthop Translat. 2018; 14:45-56.
PMC: 6019407.
DOI: 10.1016/j.jot.2018.05.002.
View
9.
Hassan M, Waheed A, Yadav S, Singh T, Ahmad F
. Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res. 2008; 6(6):892-906.
DOI: 10.1158/1541-7786.MCR-07-2195.
View
10.
Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T
. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood. 2004; 104(8):2484-91.
DOI: 10.1182/blood-2003-11-3839.
View
11.
Kumar J, Swanberg M, McGuigan F, Callreus M, Gerdhem P, Akesson K
. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone. 2011; 49(3):343-8.
DOI: 10.1016/j.bone.2011.05.018.
View
12.
Zhang J, Hu W, Zou Z, Li Y, Kang F, Li J
. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis. 2024; 11(4):101122.
PMC: 10958717.
DOI: 10.1016/j.gendis.2023.101122.
View
13.
Andrzejowski P, Giannoudis P
. The 'diamond concept' for long bone non-union management. J Orthop Traumatol. 2019; 20(1):21.
PMC: 6459453.
DOI: 10.1186/s10195-019-0528-0.
View
14.
Ponzetti M, Rucci N
. Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. Int J Mol Sci. 2021; 22(13).
PMC: 8268587.
DOI: 10.3390/ijms22136651.
View
15.
Wang B, Wang H, Li Y, Song L
. Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids Health Dis. 2022; 21(1):5.
PMC: 8742318.
DOI: 10.1186/s12944-021-01615-5.
View
16.
Sookoian S, Pirola C
. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol. 2012; 18(29):3775-81.
PMC: 3413046.
DOI: 10.3748/wjg.v18.i29.3775.
View
17.
Suzuki A, Iwata J
. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone. 2021; 146:115881.
PMC: 8462526.
DOI: 10.1016/j.bone.2021.115881.
View
18.
Bahney C, Zondervan R, Allison P, Theologis A, Ashley J, Ahn J
. Cellular biology of fracture healing. J Orthop Res. 2018; 37(1):35-50.
PMC: 6542569.
DOI: 10.1002/jor.24170.
View
19.
Menger M, Laschke M, Nussler A, Menger M, Histing T
. The vascularization paradox of non-union formation. Angiogenesis. 2022; 25(3):279-290.
PMC: 9249698.
DOI: 10.1007/s10456-022-09832-x.
View
20.
Carreira A, Zambuzzi W, Rossi M, Astorino Filho R, Sogayar M, Granjeiro J
. Bone Morphogenetic Proteins: Promising Molecules for Bone Healing, Bioengineering, and Regenerative Medicine. Vitam Horm. 2015; 99:293-322.
DOI: 10.1016/bs.vh.2015.06.002.
View