6.
Nair A, Groenendijk L, Overdevest R, Fowke T, Annida R, Mocellin O
. Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions. Front Mol Neurosci. 2023; 16:1250123.
PMC: 10561300.
DOI: 10.3389/fnmol.2023.1250123.
View
7.
Ronaldson-Bouchard K, Teles D, Yeager K, Tavakol D, Zhao Y, Chramiec A
. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022; 6(4):351-371.
PMC: 9250010.
DOI: 10.1038/s41551-022-00882-6.
View
8.
Edington C, Chen W, Geishecker E, Kassis T, Soenksen L, Bhushan B
. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep. 2018; 8(1):4530.
PMC: 5852083.
DOI: 10.1038/s41598-018-22749-0.
View
9.
Baldwin L, Jones E, Iles A, Carding S, Pamme N, Dyer C
. Development of a dual-flow tissue perfusion device for modeling the gastrointestinal tract-brain axis. Biomicrofluidics. 2023; 17(5):054104.
PMC: 10569815.
DOI: 10.1063/5.0168953.
View
10.
Simats A, Zhang S, Messerer D, Chong F, Beskardes S, Sharma Chivukula A
. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell. 2024; 187(17):4637-4655.e26.
DOI: 10.1016/j.cell.2024.06.028.
View
11.
Xiao Y, Zhang B, Liu H, Miklas J, Gagliardi M, Pahnke A
. Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip. 2013; 14(5):869-82.
PMC: 3969269.
DOI: 10.1039/c3lc51123e.
View
12.
Macedo M, Dias Neto M, Pastrana L, Goncalves C, Xavier M
. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. Adv Sci (Weinh). 2023; 10(31):e2301391.
PMC: 10625086.
DOI: 10.1002/advs.202301391.
View
13.
Pelkonen A, Mzezewa R, Sukki L, Ryynanen T, Kreutzer J, Hyvarinen T
. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Biosens Bioelectron. 2020; 168:112553.
DOI: 10.1016/j.bios.2020.112553.
View
14.
Cecen B, Saygili E, Zare I, Nejati O, Khorsandi D, Zarepour A
. Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron. 2023; 225:115100.
DOI: 10.1016/j.bios.2023.115100.
View
15.
Maschmeyer I, Lorenz A, Schimek K, Hasenberg T, Ramme A, Hubner J
. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015; 15(12):2688-99.
DOI: 10.1039/c5lc00392j.
View
16.
Li Q, Niu K, Wang D, Xuan L, Wang X
. Low-cost rapid prototyping and assembly of an open microfluidic device for a 3D vascularized organ-on-a-chip. Lab Chip. 2021; 22(14):2682-2694.
DOI: 10.1039/d1lc00767j.
View
17.
Herland A, Maoz B, Das D, Somayaji M, Prantil-Baun R, Novak R
. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng. 2020; 4(4):421-436.
PMC: 8011576.
DOI: 10.1038/s41551-019-0498-9.
View
18.
Ma L, Wang Y, Wang J, Wu J, Meng X, Hu P
. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018; 18(17):2547-2562.
DOI: 10.1039/c8lc00333e.
View
19.
Jalili-Firoozinezhad S, Miranda C, Cabral J
. Modeling the Human Body on Microfluidic Chips. Trends Biotechnol. 2021; 39(8):838-852.
DOI: 10.1016/j.tibtech.2021.01.004.
View
20.
Maoz B, Herland A, FitzGerald E, Grevesse T, Vidoudez C, Pacheco A
. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018; 36(9):865-874.
PMC: 9254231.
DOI: 10.1038/nbt.4226.
View