6.
Yao Y, Giner E, Anderson T, Toulouse J, Umrigar C
. Accurate energies of transition metal atoms, ions, and monoxides using selected configuration interaction and density-based basis-set corrections. J Chem Phys. 2021; 155(20):204104.
DOI: 10.1063/5.0072296.
View
7.
Aspuru-Guzik A, Dutoi A, Love P, Head-Gordon M
. Simulated quantum computation of molecular energies. Science. 2005; 309(5741):1704-7.
DOI: 10.1126/science.1113479.
View
8.
Peruzzo A, McClean J, Shadbolt P, Yung M, Zhou X, Love P
. A variational eigenvalue solver on a photonic quantum processor. Nat Commun. 2014; 5:4213.
PMC: 4124861.
DOI: 10.1038/ncomms5213.
View
9.
Mao Y, Horn P, Mardirossian N, Head-Gordon T, Skylaris C, Head-Gordon M
. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation. J Chem Phys. 2016; 145(4):044109.
DOI: 10.1063/1.4959125.
View
10.
Traore D, Giner E, Toulouse J
. Basis-set correction based on density-functional theory: Rigorous framework for a one-dimensional model. J Chem Phys. 2022; 156(4):044113.
DOI: 10.1063/5.0076128.
View
11.
Schutt O, VandeVondele J
. Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation. J Chem Theory Comput. 2018; 14(8):4168-4175.
PMC: 6096449.
DOI: 10.1021/acs.jctc.8b00378.
View
12.
Giner E, Pradines B, Ferte A, Assaraf R, Savin A, Toulouse J
. Curing basis-set convergence of wave-function theory using density-functional theory: A systematically improvable approach. J Chem Phys. 2018; 149(19):194301.
DOI: 10.1063/1.5052714.
View
13.
Hesselmann A, Giner E, Reinhardt P, Knowles P, Werner H, Toulouse J
. A density-fitting implementation of the density-based basis-set correction method. J Comput Chem. 2024; 45(15):1247-1253.
DOI: 10.1002/jcc.27325.
View
14.
Ammar A, Scemama A, Giner E
. Extension of selected configuration interaction for transcorrelated methods. J Chem Phys. 2022; 157(13):134107.
DOI: 10.1063/5.0115524.
View
15.
Schleich P, Kottmann J, Aspuru-Guzik A
. Improving the accuracy of the variational quantum eigensolver for molecular systems by the explicitly-correlated perturbative [2]correction. Phys Chem Chem Phys. 2022; 24(22):13550-13564.
DOI: 10.1039/d2cp00247g.
View
16.
Chan G, Sharma S
. The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem. 2011; 62:465-81.
DOI: 10.1146/annurev-physchem-032210-103338.
View
17.
Kottmann J, Schleich P, Tamayo-Mendoza T, Aspuru-Guzik A
. Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach. J Phys Chem Lett. 2021; 12(1):663-673.
DOI: 10.1021/acs.jpclett.0c03410.
View
18.
Garniron Y, Applencourt T, Gasperich K, Benali A, Ferte A, Paquier J
. Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs. J Chem Theory Comput. 2019; 15(6):3591-3609.
DOI: 10.1021/acs.jctc.9b00176.
View
19.
Traore D, Giner E, Toulouse J
. Basis-set correction based on density-functional theory: Linear-response formalism for excited-state energies. J Chem Phys. 2023; 158(23).
DOI: 10.1063/5.0156317.
View
20.
Posenitskiy E, Chilkuri V, Ammar A, Hapka M, Pernal K, Shinde R
. TREXIO: A file format and library for quantum chemistry. J Chem Phys. 2023; 158(17).
DOI: 10.1063/5.0148161.
View