6.
Torres C, Vitalis E, Baker B, Gardner S, Torres M, Dzenitis J
. LAVA: an open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures. BMC Bioinformatics. 2011; 12:240.
PMC: 3213686.
DOI: 10.1186/1471-2105-12-240.
View
7.
Lamas A, Azinheiro S, Roumani F, Prado M, Garrido-Maestu A
. Evaluation of the effect of outer primer structure, and inner primer linker sequences, in the performance of Loop-mediated isothermal amplification. Talanta. 2023; 260:124642.
DOI: 10.1016/j.talanta.2023.124642.
View
8.
Broten C, Wydallis J, Reilly 3rd T, Bisha B
. Development and Evaluation of a Paper-Based Microfluidic Device for Detection of on Food Contact and Non-Food Contact Surfaces. Foods. 2022; 11(7).
PMC: 8997480.
DOI: 10.3390/foods11070947.
View
9.
Domesle K, Yang Q, Hammack T, Ge B
. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. Int J Food Microbiol. 2017; 264:63-76.
DOI: 10.1016/j.ijfoodmicro.2017.10.020.
View
10.
Commichaux S, Javkar K, Ramachandran P, Nagarajan N, Bertrand D, Chen Y
. Evaluating the accuracy of Listeria monocytogenes assemblies from quasimetagenomic samples using long and short reads. BMC Genomics. 2021; 22(1):389.
PMC: 8157722.
DOI: 10.1186/s12864-021-07702-2.
View
11.
Capo A, DAuria S, Lacroix M
. A fluorescence immunoassay for a rapid detection of Listeria monocytogenes on working surfaces. Sci Rep. 2020; 10(1):21729.
PMC: 7729958.
DOI: 10.1038/s41598-020-77747-y.
View
12.
Elumalai M, Ipatov A, Carvalho J, Guerreiro J, Prado M
. Dual colorimetric strategy for specific DNA detection by nicking endonuclease-assisted gold nanoparticle signal amplification. Anal Bioanal Chem. 2021; 414(18):5239-5253.
DOI: 10.1007/s00216-021-03564-5.
View
13.
Nixon G, Garson J, Grant P, Nastouli E, Foy C, Huggett J
. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem. 2014; 86(9):4387-94.
DOI: 10.1021/ac500208w.
View
14.
Rodriguez-Lazaro D, Gonzalez-Garcia P, Gattuso A, Gianfranceschi M, Hernandez M
. Reducing time in the analysis of Listeria monocytogenes in meat, dairy and vegetable products. Int J Food Microbiol. 2014; 184:98-105.
DOI: 10.1016/j.ijfoodmicro.2014.03.006.
View
15.
Zhang G, Brown E, Gonzalez-Escalona N
. Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl Environ Microbiol. 2011; 77(18):6495-501.
PMC: 3187133.
DOI: 10.1128/AEM.00520-11.
View
16.
Allerberger F, Wagner M
. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect. 2009; 16(1):16-23.
DOI: 10.1111/j.1469-0691.2009.03109.x.
View
17.
Kaneko H, Kawana T, Fukushima E, Suzutani T
. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods. 2006; 70(3):499-501.
DOI: 10.1016/j.jbbm.2006.08.008.
View
18.
Abril A, Carrera M, Bohme K, Barros-Velazquez J, Calo-Mata P, Sanchez-Perez A
. Proteomic Characterization of Antibiotic Resistance in and Production of Antimicrobial and Virulence Factors. Int J Mol Sci. 2021; 22(15).
PMC: 8348566.
DOI: 10.3390/ijms22158141.
View
19.
Yang M, Cousineau A, Liu X, Luo Y, Sun D, Li S
. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Front Microbiol. 2020; 11:514.
PMC: 7160302.
DOI: 10.3389/fmicb.2020.00514.
View
20.
Wilrich C, Wilrich P
. Estimation of the POD function and the LOD of a qualitative microbiological measurement method. J AOAC Int. 2010; 92(6):1763-72.
View