6.
Reinhardt S, Masullo L, Baudrexel I, Steen P, Kowalewski R, Eklund A
. Ångström-resolution fluorescence microscopy. Nature. 2023; 617(7962):711-716.
PMC: 10208979.
DOI: 10.1038/s41586-023-05925-9.
View
7.
Sahl S, Matthias J, Inamdar K, Weber M, Khan T, Bruser C
. Direct optical measurement of intramolecular distances with angstrom precision. Science. 2024; 386(6718):180-187.
DOI: 10.1126/science.adj7368.
View
8.
Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna G, Tinnefeld P
. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners. Nano Lett. 2019; 19(7):4257-4262.
DOI: 10.1021/acs.nanolett.9b00172.
View
9.
Kaminska I, Bohlen J, Yaadav R, Schuler P, Raab M, Schroder T
. Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy. Adv Mater. 2021; 33(24):e2101099.
PMC: 11468539.
DOI: 10.1002/adma.202101099.
View
10.
Weber M, von der Emde H, Leutenegger M, Gunkel P, Sambandan S, Khan T
. MINSTED nanoscopy enters the Ångström localization range. Nat Biotechnol. 2022; 41(4):569-576.
PMC: 10110459.
DOI: 10.1038/s41587-022-01519-4.
View
11.
Gwosch K, Pape J, Balzarotti F, Hoess P, Ellenberg J, Ries J
. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods. 2020; 17(2):217-224.
DOI: 10.1038/s41592-019-0688-0.
View
12.
Thevathasan J, Kahnwald M, Cieslinski K, Hoess P, Peneti S, Reitberger M
. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods. 2019; 16(10):1045-1053.
PMC: 6768092.
DOI: 10.1038/s41592-019-0574-9.
View
13.
Secundo F
. Conformational changes of enzymes upon immobilisation. Chem Soc Rev. 2013; 42(15):6250-61.
DOI: 10.1039/c3cs35495d.
View
14.
Wolf L, Gao Y, Georgiadis R
. Sequence-dependent DNA immobilization: specific versus nonspecific contributions. Langmuir. 2005; 20(8):3357-61.
DOI: 10.1021/la036125+.
View
15.
Hamlin R, Dayton T, Johnson L, Johal M
. A QCM study of the immobilization of beta-galactosidase on polyelectrolyte surfaces: effect of the terminal polyion on enzymatic surface activity. Langmuir. 2007; 23(8):4432-7.
DOI: 10.1021/la063339t.
View
16.
Krause S, Ploetz E, Bohlen J, Schuler P, Yaadav R, Selbach F
. Graphene-on-Glass Preparation and Cleaning Methods Characterized by Single-Molecule DNA Origami Fluorescent Probes and Raman Spectroscopy. ACS Nano. 2021; 15(4):6430-6438.
DOI: 10.1021/acsnano.0c08383.
View
17.
Zahringer J, Cole F, Bohlen J, Steiner F, Kaminska I, Tinnefeld P
. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. Light Sci Appl. 2023; 12(1):70.
PMC: 10006205.
DOI: 10.1038/s41377-023-01111-8.
View
18.
Minetti C, Remeta D, Dickstein R, Breslauer K
. Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res. 2009; 38(1):97-116.
PMC: 2800203.
DOI: 10.1093/nar/gkp1036.
View
19.
Joshua-Tor L, Frolow F, Appella E, Hope H, Rabinovich D, Sussman J
. Three-dimensional structures of bulge-containing DNA fragments. J Mol Biol. 1992; 225(2):397-431.
DOI: 10.1016/0022-2836(92)90929-e.
View
20.
Koo H, Wu H, Crothers D
. DNA bending at adenine . thymine tracts. Nature. 1986; 320(6062):501-6.
DOI: 10.1038/320501a0.
View