6.
Donadono V, Ambroise Grandjean G, Stegen M, Collin A, Bertholdt C, Casagrandi D
. Training in Obstetric Ultrasound Biometry: Results from a Multicenter Reproducibility Study. J Ultrasound Med. 2022; 41(11):2819-2825.
DOI: 10.1002/jum.15969.
View
7.
Bij de Vaate A, van der Voet L, Naji O, Witmer M, Veersema S, Brolmann H
. Prevalence, potential risk factors for development and symptoms related to the presence of uterine niches following Cesarean section: systematic review. Ultrasound Obstet Gynecol. 2013; 43(4):372-82.
DOI: 10.1002/uog.13199.
View
8.
Shapira M, Mashiach R, Meller N, Watad H, Baron A, Bouaziz J
. Clinical Success Rate of Extensive Hysteroscopic Cesarean Scar Defect Excision and Correlation to Histologic Findings. J Minim Invasive Gynecol. 2019; 27(1):129-134.
DOI: 10.1016/j.jmig.2019.03.001.
View
9.
Baranov A, Gunnarsson G, Salvesen K, Isberg P, Vikhareva O
. Assessment of Cesarean hysterotomy scar in non-pregnant women: reliability of transvaginal sonography with and without contrast enhancement. Ultrasound Obstet Gynecol. 2015; 47(4):499-505.
DOI: 10.1002/uog.14833.
View
10.
Karpathiou G, Chauleur C, Dridi M, Baillard P, Corsini T, Dumollard J
. Histologic Findings of Uterine Niches. Am J Clin Pathol. 2020; 154(5):645-655.
DOI: 10.1093/ajcp/aqaa080.
View
11.
Bland J, Altman D
. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1(8476):307-10.
View
12.
Boerma T, Ronsmans C, Melesse D, Barros A, Barros F, Juan L
. Global epidemiology of use of and disparities in caesarean sections. Lancet. 2018; 392(10155):1341-1348.
DOI: 10.1016/S0140-6736(18)31928-7.
View
13.
Sarris I, Ohuma E, Ioannou C, Sande J, Altman D, Papageorghiou A
. Fetal biometry: how well can offline measurements from three-dimensional volumes substitute real-time two-dimensional measurements?. Ultrasound Obstet Gynecol. 2013; 42(5):560-70.
DOI: 10.1002/uog.12410.
View
14.
Ahmed A, Aldhaheri S, Rodriguez-Kovacs J, Narasimhulu D, Putra M, Minkoff H
. Sonographic Measurement of Cervical Volume in Pregnant Women at High Risk of Preterm Birth Using a Geometric Formula for a Frustum Versus 3-Dimensional Automated Virtual Organ Computer-Aided Analysis. J Ultrasound Med. 2017; 36(11):2209-2217.
DOI: 10.1002/jum.14253.
View
15.
Banerjee A, Al-Dabbach Z, Bredaki F, Casagrandi D, Tetteh A, Greenwold N
. Reproducibility of assessment of full-dilatation Cesarean section scar in women undergoing second-trimester screening for preterm birth. Ultrasound Obstet Gynecol. 2022; 60(3):396-403.
PMC: 9545619.
DOI: 10.1002/uog.26027.
View
16.
Athulathmudali S, Patabendige M, Chandrasinghe S, De Silva P
. Transvaginal two-dimensional ultrasound measurement of cervical volume to predict the outcome of the induction of labour: a prospective observational study. BMC Pregnancy Childbirth. 2021; 21(1):433.
PMC: 8218494.
DOI: 10.1186/s12884-021-03929-9.
View
17.
Rovas L, Sladkevicius P, Strobel E, Valentin L
. Reference data representative of normal findings at three-dimensional power Doppler ultrasound examination of the cervix from 17 to 41 gestational weeks. Ultrasound Obstet Gynecol. 2006; 28(6):761-7.
DOI: 10.1002/uog.2857.
View
18.
Cong A, de Vries B, Ludlow J
. Does previous caesarean section at full dilatation increase the likelihood of subsequent spontaneous preterm birth?. Aust N Z J Obstet Gynaecol. 2017; 58(3):267-273.
DOI: 10.1111/ajo.12713.
View
19.
Naji O, Daemen A, Smith A, Abdallah Y, Saso S, Stalder C
. Visibility and measurement of cesarean section scars in pregnancy: a reproducibility study. Ultrasound Obstet Gynecol. 2012; 40(5):549-56.
DOI: 10.1002/uog.11132.
View
20.
Berghella V, Gimovsky A, Levine L, Vink J
. Cesarean in the second stage: a possible risk factor for subsequent spontaneous preterm birth. Am J Obstet Gynecol. 2017; 217(1):1-3.
PMC: 6069594.
DOI: 10.1016/j.ajog.2017.04.019.
View