6.
Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y
. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther. 2022; 7(1):39.
PMC: 8821599.
DOI: 10.1038/s41392-021-00868-x.
View
7.
Wang X, Luo D, Basilion J
. Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers. Cancers (Basel). 2021; 13(12).
PMC: 8232794.
DOI: 10.3390/cancers13122992.
View
8.
Park S, Yeo H, Kang N, Kim H, Lin J, Ha H
. Mechanistic elements and critical factors of cellular reprogramming revealed by stepwise global gene expression analyses. Stem Cell Res. 2014; 12(3):730-41.
DOI: 10.1016/j.scr.2014.03.002.
View
9.
Zhao C, Fernandez A, Avlonitis N, Velde G, Bradley M, Read N
. Searching for the Optimal Fluorophore to Label Antimicrobial Peptides. ACS Comb Sci. 2016; 18(11):689-696.
DOI: 10.1021/acscombsci.6b00081.
View
10.
Kaplaneris N, Son J, Mendive-Tapia L, Kopp A, Barth N, Maksso I
. Chemodivergent manganese-catalyzed C-H activation: modular synthesis of fluorogenic probes. Nat Commun. 2021; 12(1):3389.
PMC: 8185085.
DOI: 10.1038/s41467-021-23462-9.
View
11.
Barth N, Subiros-Funosas R, Mendive-Tapia L, Duffin R, Shields M, Cartwright J
. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat Commun. 2020; 11(1):4027.
PMC: 7423924.
DOI: 10.1038/s41467-020-17772-7.
View
12.
Ghashghaei O, Caputo S, Sintes M, Reves M, Kielland N, Estarellas C
. Multiple Multicomponent Reactions: Unexplored Substrates, Selective Processes, and Versatile Chemotypes in Biomedicine. Chemistry. 2018; 24(54):14513-14521.
DOI: 10.1002/chem.201802877.
View
13.
Wu X, Wang R, Kwon N, Ma H, Yoon J
. Activatable fluorescent probes for imaging of enzymes. Chem Soc Rev. 2021; 51(2):450-463.
DOI: 10.1039/d1cs00543j.
View
14.
Mendive-Tapia L, Vendrell M
. Activatable Fluorophores for Imaging Immune Cell Function. Acc Chem Res. 2022; 55(8):1183-1193.
PMC: 9022227.
DOI: 10.1021/acs.accounts.2c00070.
View
15.
Mochida A, Ogata F, Nagaya T, Choyke P, Kobayashi H
. Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations. Bioorg Med Chem. 2017; 26(4):925-930.
PMC: 5820175.
DOI: 10.1016/j.bmc.2017.12.002.
View
16.
Pavlova N, Zhu J, Thompson C
. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022; 34(3):355-377.
PMC: 8891094.
DOI: 10.1016/j.cmet.2022.01.007.
View
17.
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J
. Theranostic Fluorescent Probes. Chem Rev. 2024; 124(5):2699-2804.
PMC: 11132561.
DOI: 10.1021/acs.chemrev.3c00778.
View
18.
Hulikova A, Harris A, Vaughan-Jones R, Swietach P
. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia. J Cell Physiol. 2012; 228(4):743-52.
DOI: 10.1002/jcp.24221.
View
19.
Wang C, Chi W, Qiao Q, Tan D, Xu Z, Liu X
. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem Soc Rev. 2021; 50(22):12656-12678.
DOI: 10.1039/d1cs00239b.
View
20.
Siriwibool S, Kaekratoke N, Chansaenpak K, Siwawannapong K, Panajapo P, Sagarik K
. Near-Infrared Fluorescent pH Responsive Probe for Targeted Photodynamic Cancer Therapy. Sci Rep. 2020; 10(1):1283.
PMC: 6987190.
DOI: 10.1038/s41598-020-58239-5.
View