6.
Sunyoto T, Potet J, Boelaert M
. Why miltefosine-a life-saving drug for leishmaniasis-is unavailable to people who need it the most. BMJ Glob Health. 2018; 3(3):e000709.
PMC: 5935166.
DOI: 10.1136/bmjgh-2018-000709.
View
7.
Gupta S, Yardley V, Vishwakarma P, Shivahare R, Sharma B, Launay D
. Nitroimidazo-oxazole compound DNDI-VL-2098: an orally effective preclinical drug candidate for the treatment of visceral leishmaniasis. J Antimicrob Chemother. 2014; 70(2):518-27.
DOI: 10.1093/jac/dku422.
View
8.
Nagle A, Khare S, Kumar A, Supek F, Buchynskyy A, Mathison C
. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev. 2014; 114(22):11305-47.
PMC: 4633805.
DOI: 10.1021/cr500365f.
View
9.
Ortiz D, Guiguemde W, Hammill J, Carrillo A, Chen Y, Connelly M
. Discovery of novel, orally bioavailable, antileishmanial compounds using phenotypic screening. PLoS Negl Trop Dis. 2017; 11(12):e0006157.
PMC: 5764437.
DOI: 10.1371/journal.pntd.0006157.
View
10.
Thompson A, OConnor P, Marshall A, Yardley V, Maes L, Gupta S
. 7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis. J Med Chem. 2017; 60(10):4212-4233.
PMC: 7722354.
DOI: 10.1021/acs.jmedchem.7b00034.
View
11.
Fino R, Lenhart D, Kalel V, Softley C, Napolitano V, Byrne R
. Computer-Aided Design and Synthesis of a New Class of PEX14 Inhibitors: Substituted 2,3,4,5-Tetrahydrobenzo[F][1,4]oxazepines as Potential New Trypanocidal Agents. J Chem Inf Model. 2021; 61(10):5256-5268.
DOI: 10.1021/acs.jcim.1c00472.
View
12.
Hwang J, Smithson D, Holbrook G, Zhu F, Connelly M, Kaiser M
. Optimization of the electrophile of chloronitrobenzamide leads active against Trypanosoma brucei. Bioorg Med Chem Lett. 2013; 23(14):4127-31.
DOI: 10.1016/j.bmcl.2013.05.049.
View
13.
Shafi S, Afrin F, Islamuddin M, Chouhan G, Ali I, Naaz F
. β-Nitrostyrenes as Potential Anti-leishmanial Agents. Front Microbiol. 2016; 7:1379.
PMC: 5007854.
DOI: 10.3389/fmicb.2016.01379.
View
14.
Popp T, Tallant C, Rogers C, Fedorov O, Brennan P, Muller S
. Development of Selective CBP/P300 Benzoxazepine Bromodomain Inhibitors. J Med Chem. 2016; 59(19):8889-8912.
DOI: 10.1021/acs.jmedchem.6b00774.
View
15.
Hammill J, Sviripa V, Kril L, Ortiz D, Fargo C, Kim H
. Amino-Substituted 3-Aryl- and 3-Heteroarylquinolines as Potential Antileishmanial Agents. J Med Chem. 2021; 64(16):12152-12162.
PMC: 8404201.
DOI: 10.1021/acs.jmedchem.1c00813.
View
16.
Alcantara L, Ferreira T, Gadelha F, Miguel D
. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018; 8(3):430-439.
PMC: 6195035.
DOI: 10.1016/j.ijpddr.2018.09.006.
View
17.
Fox B, Beck H, Roveto P, Kayser F, Cheng Q, Dou H
. A selective prostaglandin E2 receptor subtype 2 (EP2) antagonist increases the macrophage-mediated clearance of amyloid-beta plaques. J Med Chem. 2015; 58(13):5256-73.
DOI: 10.1021/acs.jmedchem.5b00567.
View
18.
Kim H, Ortiz D, Kadayat T, Fargo C, Hammill J, Chen Y
. Optimization of Orally Bioavailable Antileishmanial 2,4,5-Trisubstituted Benzamides. J Med Chem. 2023; 66(11):7374-7386.
PMC: 10259451.
DOI: 10.1021/acs.jmedchem.3c00056.
View
19.
Sharlow E, Close D, Shun T, Leimgruber S, Reed R, Mustata G
. Identification of potent chemotypes targeting Leishmania major using a high-throughput, low-stringency, computationally enhanced, small molecule screen. PLoS Negl Trop Dis. 2009; 3(11):e540.
PMC: 2765639.
DOI: 10.1371/journal.pntd.0000540.
View
20.
Hwang J, Smithson D, Zhu F, Holbrook G, Connelly M, Kaiser M
. Optimization of chloronitrobenzamides (CNBs) as therapeutic leads for human African trypanosomiasis (HAT). J Med Chem. 2013; 56(7):2850-60.
DOI: 10.1021/jm301687p.
View