6.
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Heris J, Soltani-Zangbar M
. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal. 2022; 20(1):198.
PMC: 9783981.
DOI: 10.1186/s12964-022-00992-3.
View
7.
Khan K, Javed Z, Sadia H, Sharifi-Rad J, Cho W, Luparello C
. Quercetin and MicroRNA Interplay in Apoptosis Regulation in Ovarian Cancer. Curr Pharm Des. 2020; 27(20):2328-2336.
DOI: 10.2174/1381612826666201019102207.
View
8.
Perry S, Epstein L, Gelbard H
. In situ trypan blue staining of monolayer cell cultures for permanent fixation and mounting. Biotechniques. 1997; 22(6):1020-1, 1024.
DOI: 10.2144/97226bm01.
View
9.
Tarko A, Stochmalova A, Jedlickova K, Hrabovszka S, Vachanova A, Harrath A
. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Arch Anim Breed. 2019; 62(1):345-351.
PMC: 6852862.
DOI: 10.5194/aab-62-345-2019.
View
10.
Tarko A, Stochmalova A, Harrath A, Kotwica J, Balazi A, Sirotkin A
. Quercetin can affect porcine ovarian cell functions and to mitigate some of the effects of the environmental contaminant toluene. Res Vet Sci. 2022; 154:89-96.
DOI: 10.1016/j.rvsc.2022.12.005.
View
11.
Qin W, Xie W, He Q, Sun T, Meng C, Yang K
. MicroRNA-152 inhibits ovarian cancer cell proliferation and migration and may infer improved outcomes in ovarian cancer through targeting FOXP1. Exp Ther Med. 2018; 15(2):1672-1679.
PMC: 5774449.
DOI: 10.3892/etm.2017.5529.
View
12.
Ranasinghe P, Addison M, Dear J, Webb D
. Small interfering RNA: Discovery, pharmacology and clinical development-An introductory review. Br J Pharmacol. 2022; 180(21):2697-2720.
DOI: 10.1111/bph.15972.
View
13.
Sirotkin A, Ovcharenko D, Grossmann R, Laukova M, Mlyncek M
. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol. 2009; 219(2):415-20.
DOI: 10.1002/jcp.21689.
View
14.
Rehman U, Parveen N, Sheikh A, Abourehab M, Sahebkar A, Kesharwani P
. Polymeric nanoparticles-siRNA as an emerging nano-polyplexes against ovarian cancer. Colloids Surf B Biointerfaces. 2022; 218:112766.
DOI: 10.1016/j.colsurfb.2022.112766.
View
15.
Sirotkin A
. Application of RNA interference for the control of female reproductive functions. Curr Pharm Des. 2012; 18(3):325-36.
DOI: 10.2174/138161212799040376.
View
16.
Sirotkin A, Stochmalova A, Alexa R, Kadasi A, Bauer M, Grossmann R
. Quercetin directly inhibits basal ovarian cell functions and their response to the stimulatory action of FSH. Eur J Pharmacol. 2019; 860:172560.
DOI: 10.1016/j.ejphar.2019.172560.
View
17.
Sirotkin A, Hrabovszka S, Stochmalova A, Grossmann R, Alwasel S, Harrath A
. Effect of quercetin on ovarian cells of pigs and cattle. Anim Reprod Sci. 2019; 205:44-51.
DOI: 10.1016/j.anireprosci.2019.04.002.
View
18.
Livak K, Schmittgen T
. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2002; 25(4):402-8.
DOI: 10.1006/meth.2001.1262.
View
19.
Sirotkin A
. Quercetin action on health and female reproduction in mammals. Crit Rev Food Sci Nutr. 2023; 64(33):12670-12684.
DOI: 10.1080/10408398.2023.2256001.
View
20.
Sirotkin A, Kisova G, Brenaut P, Ovcharenko D, Grossmann R, Mlyncek M
. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014; 3(1):29-36.
DOI: 10.2174/2211536603666140227232824.
View