6.
Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J
. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000; 52(4):662-8.
DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3.
View
7.
Thomas B, Raj M, B A, H R, Joy J, Moores A
. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev. 2018; 118(24):11575-11625.
DOI: 10.1021/acs.chemrev.7b00627.
View
8.
Timofeeva L, Kleshcheva N
. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2010; 89(3):475-92.
DOI: 10.1007/s00253-010-2920-9.
View
9.
Trache D, Tarchoun A, Derradji M, Hamidon T, Masruchin N, Brosse N
. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem. 2020; 8:392.
PMC: 7218176.
DOI: 10.3389/fchem.2020.00392.
View
10.
Jia B, Mei Y, Cheng L, Zhou J, Zhang L
. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces. 2012; 4(6):2897-902.
DOI: 10.1021/am3007609.
View
11.
Park S, Baker J, Himmel M, Parilla P, Johnson D
. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels. 2010; 3:10.
PMC: 2890632.
DOI: 10.1186/1754-6834-3-10.
View
12.
Rajagopal M, Walker S
. Envelope Structures of Gram-Positive Bacteria. Curr Top Microbiol Immunol. 2016; 404:1-44.
PMC: 5002265.
DOI: 10.1007/82_2015_5021.
View
13.
Lefatshe K, Muiva C, Kebaabetswe L
. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym. 2017; 164:301-308.
DOI: 10.1016/j.carbpol.2017.02.020.
View
14.
Sonohara R, Muramatsu N, Ohshima H, Kondo T
. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem. 1995; 55(3):273-7.
DOI: 10.1016/0301-4622(95)00004-h.
View
15.
Carpenter B, Scholle F, Sadeghifar H, Francis A, Boltersdorf J, Weare W
. Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper. Biomacromolecules. 2015; 16(8):2482-92.
DOI: 10.1021/acs.biomac.5b00758.
View
16.
Bondarenko O, Heinlaan M, Sihtmae M, Ivask A, Kurvet I, Joonas E
. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology. 2016; 10(9):1229-42.
PMC: 5030619.
DOI: 10.1080/17435390.2016.1196251.
View
17.
Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S
. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against . Biomater Investig Dent. 2020; 7(1):105-109.
PMC: 7470068.
DOI: 10.1080/26415275.2020.1796674.
View
18.
Chen M, Feng Y, Wang X, Li T, Zhang J, Qian D
. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir. 2007; 23(10):5296-304.
DOI: 10.1021/la700553d.
View
19.
Agnihotri S, Mukherji S, Mukherji S
. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013; 5(16):7328-40.
DOI: 10.1039/c3nr00024a.
View
20.
Lv M, Su S, He Y, Huang Q, Hu W, Li D
. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater. 2010; 22(48):5463-7.
DOI: 10.1002/adma.201001934.
View