» Articles » PMID: 39420147

A Platform-agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer Towards Autonomous Driving

Overview
Journal Commun Eng
Publisher Springer Nature
Date 2024 Oct 17
PMID 39420147
Authors
Affiliations
Soon will be listed here.
Abstract

Autonomous driving presents unique challenges, particularly in transferring agents trained in simulation to real-world environments due to the discrepancies between the two. To address this issue, here we propose a robust Deep Reinforcement Learning (DRL) framework that incorporates platform-dependent perception modules to extract task-relevant information, enabling the training of a lane-following and overtaking agent in simulation. This framework facilitates the efficient transfer of the DRL agent to new simulated environments and the real world with minimal adjustments. We assess the performance of the agent across various driving scenarios in both simulation and the real world, comparing it to human drivers and a proportional-integral-derivative (PID) baseline in simulation. Additionally, we contrast it with other DRL baselines to clarify the rationale behind choosing this framework. Our proposed approach helps bridge the gaps between different platforms and the Simulation to Reality (Sim2Real) gap, allowing the trained agent to perform consistently in both simulation and real-world scenarios, effectively driving the vehicle.

Citing Articles

A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving.

Li D, Okhrin O Commun Eng. 2024; 3(1):147.

PMID: 39420147 PMC: 11487131. DOI: 10.1038/s44172-024-00292-3.

References
1.
Wurman P, Barrett S, Kawamoto K, MacGlashan J, Subramanian K, Walsh T . Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature. 2022; 602(7896):223-228. DOI: 10.1038/s41586-021-04357-7. View

2.
Canny J . A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 2011; 8(6):679-98. View

3.
Hochreiter S, Schmidhuber J . Long short-term memory. Neural Comput. 1997; 9(8):1735-80. DOI: 10.1162/neco.1997.9.8.1735. View

4.
Bellemare M, Candido S, Castro P, Gong J, Machado M, Moitra S . Autonomous navigation of stratospheric balloons using reinforcement learning. Nature. 2020; 588(7836):77-82. DOI: 10.1038/s41586-020-2939-8. View

5.
Degrave J, Felici F, Buchli J, Neunert M, Tracey B, Carpanese F . Magnetic control of tokamak plasmas through deep reinforcement learning. Nature. 2022; 602(7897):414-419. PMC: 8850200. DOI: 10.1038/s41586-021-04301-9. View