Model-directed Generation of Artificial CRISPR-Cas13a Guide RNA Sequences Improves Nucleic Acid Detection
Overview
Authors
Affiliations
CRISPR guide RNA sequences deriving exactly from natural sequences may not perform optimally in every application. Here we implement and evaluate algorithms for designing maximally fit, artificial CRISPR-Cas13a guides with multiple mismatches to natural sequences that are tailored for diagnostic applications. These guides offer more sensitive detection of diverse pathogens and discrimination of pathogen variants compared with guides derived directly from natural sequences and illuminate design principles that broaden Cas13a targeting.
Developing, Characterizing, and Modeling CRISPR-Based Point-of-Use Pathogen Diagnostics.
Jung J, Dreyer K, Dray K, Muldoon J, George J, Shirman S ACS Synth Biol. 2024; 14(1):129-147.
PMID: 39670656 PMC: 11744932. DOI: 10.1021/acssynbio.4c00469.
Towards AI-designed genomes using a variational autoencoder.
Dudek N, Precup D Proc Biol Sci. 2024; 291(2036):20241457.
PMID: 39657811 PMC: 11631412. DOI: 10.1098/rspb.2024.1457.
Developing, characterizing and modeling CRISPR-based point-of-use pathogen diagnostics.
Jung J, Dreyer K, Dray K, Muldoon J, George J, Shirman S bioRxiv. 2024; .
PMID: 39005318 PMC: 11244977. DOI: 10.1101/2024.07.03.601853.
RNA structure modulates Cas13 activity and enables mismatch detection.
Kimchi O, Larsen B, Dunkley O, Te Velthuis A, Myhrvold C bioRxiv. 2023; .
PMID: 37987004 PMC: 10659300. DOI: 10.1101/2023.10.05.560533.