» Articles » PMID: 39394480

A Comprehensive Proteogenomic Pipeline for Neoantigen Discovery to Advance Personalized Cancer Immunotherapy

Abstract

The accurate identification and prioritization of antigenic peptides is crucial for the development of personalized cancer immunotherapies. Publicly available pipelines to predict clinical neoantigens do not allow direct integration of mass spectrometry immunopeptidomics data, which can uncover antigenic peptides derived from various canonical and noncanonical sources. To address this, we present an end-to-end clinical proteogenomic pipeline, called NeoDisc, that combines state-of-the-art publicly available and in-house software for immunopeptidomics, genomics and transcriptomics with in silico tools for the identification, prediction and prioritization of tumor-specific and immunogenic antigens from multiple sources, including neoantigens, viral antigens, high-confidence tumor-specific antigens and tumor-specific noncanonical antigens. We demonstrate the superiority of NeoDisc in accurately prioritizing immunogenic neoantigens over recent prioritization pipelines. We showcase the various features offered by NeoDisc that enable both rule-based and machine-learning approaches for personalized antigen discovery and neoantigen cancer vaccine design. Additionally, we demonstrate how NeoDisc's multiomics integration identifies defects in the cellular antigen presentation machinery, which influence the heterogeneous tumor antigenic landscape.

Citing Articles

Advances of computational methods enhance the development of multi-epitope vaccines.

Wei Y, Qiu T, Ai Y, Zhang Y, Xie J, Zhang D Brief Bioinform. 2025; 26(1).

PMID: 39951549 PMC: 11827616. DOI: 10.1093/bib/bbaf055.


The clinical application of artificial intelligence in cancer precision treatment.

Wang J, Zeng Z, Li Z, Liu G, Zhang S, Luo C J Transl Med. 2025; 23(1):120.

PMID: 39871340 PMC: 11773911. DOI: 10.1186/s12967-025-06139-5.


Warehouse-based, immunopeptidome-guided design of personalised peptide vaccines shows feasibility in clinical trial evaluation in CLL patients.

Heitmann J, Jung S, Wacker M, Maringer Y, Nelde A, Bauer J Front Immunol. 2024; 15:1482715.

PMID: 39660140 PMC: 11628388. DOI: 10.3389/fimmu.2024.1482715.


moPepGen: Rapid and Comprehensive Identification of Non-canonical Peptides.

Zhu C, Liu L, Ha A, Yamaguchi T, Zhu H, Hugh-White R bioRxiv. 2024; .

PMID: 38585946 PMC: 10996593. DOI: 10.1101/2024.03.28.587261.

References
1.
De Mattos-Arruda L, Vazquez M, Finotello F, Lepore R, Porta E, Hundal J . Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2020; 31(8):978-990. PMC: 7885309. DOI: 10.1016/j.annonc.2020.05.008. View

2.
Chong C, Coukos G, Bassani-Sternberg M . Identification of tumor antigens with immunopeptidomics. Nat Biotechnol. 2021; 40(2):175-188. DOI: 10.1038/s41587-021-01038-8. View

3.
Rieder D, Fotakis G, Ausserhofer M, Rene G, Paster W, Trajanoski Z . nextNEOpi: a comprehensive pipeline for computational neoantigen prediction. Bioinformatics. 2021; 38(4):1131-1132. PMC: 8796378. DOI: 10.1093/bioinformatics/btab759. View

4.
Schenck R, Lakatos E, Gatenbee C, Graham T, Anderson A . NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics. 2019; 20(1):264. PMC: 6532147. DOI: 10.1186/s12859-019-2876-4. View

5.
Tang Y, Wang Y, Wang J, Li M, Peng L, Wei G . TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification. BMC Bioinformatics. 2020; 21(1):532. PMC: 7672179. DOI: 10.1186/s12859-020-03869-9. View