6.
Newcomb M, Hollenberg P, Coon M
. Multiple mechanisms and multiple oxidants in P450-catalyzed hydroxylations. Arch Biochem Biophys. 2002; 409(1):72-9.
DOI: 10.1016/s0003-9861(02)00445-9.
View
7.
Harris C, Bayless M, van Leest N, Bruch Q, Livesay B, Bacsa J
. Redox-Active Bis(phenolate) N-Heterocyclic Carbene [OCO] Pincer Ligands Support Cobalt Electron Transfer Series Spanning Four Oxidation States. Inorg Chem. 2017; 56(20):12421-12435.
DOI: 10.1021/acs.inorgchem.7b01906.
View
8.
Senft L, Moore J, Franke A, Fisher K, Scheitler A, Zahl A
. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem Sci. 2021; 12(31):10483-10500.
PMC: 8356818.
DOI: 10.1039/d1sc02465e.
View
9.
Wang D, Weinstein A, White P, Stahl S
. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem Rev. 2017; 118(5):2636-2679.
DOI: 10.1021/acs.chemrev.7b00334.
View
10.
Henthorn J, Lin S, Agapie T
. Combination of redox-active ligand and lewis acid for dioxygen reduction with π-bound molybdenum-quinonoid complexes. J Am Chem Soc. 2015; 137(4):1458-64.
DOI: 10.1021/ja5100405.
View
11.
Chang M, McNeece A, Hill E, Filatov A, Anderson J
. Ligand-Based Storage of Protons and Electrons in Dihydrazonopyrrole Complexes of Nickel. Chemistry. 2018; 24(31):8001-8008.
DOI: 10.1002/chem.201800658.
View
12.
Broere D, van Leest N, de Bruin B, Siegler M, van der Vlugt J
. Reversible Redox Chemistry and Catalytic C(sp(3))-H Amination Reactivity of a Paramagnetic Pd Complex Bearing a Redox-Active o-Aminophenol-Derived NNO Pincer Ligand. Inorg Chem. 2016; 55(17):8603-11.
DOI: 10.1021/acs.inorgchem.6b01192.
View
13.
Fukin G, Baranov E, Poddelsky A, Cherkasov V, Abakumov G
. Reversible binding of molecular oxygen to catecholate and amidophenolate complexes of SbV: electronic and steric factors. Chemphyschem. 2012; 13(17):3773-6.
DOI: 10.1002/cphc.201200728.
View
14.
Luca O, Crabtree R
. Redox-active ligands in catalysis. Chem Soc Rev. 2012; 42(4):1440-59.
DOI: 10.1039/c2cs35228a.
View
15.
Pinto A, Rodrigues J, Teixeira M
. Reductive elimination of superoxide: Structure and mechanism of superoxide reductases. Biochim Biophys Acta. 2009; 1804(2):285-97.
DOI: 10.1016/j.bbapap.2009.10.011.
View
16.
Ott J, Burgy D, Guan H, Gade L
. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Acc Chem Res. 2022; 55(6):857-868.
DOI: 10.1021/acs.accounts.1c00737.
View
17.
Giglio B, Schmidt V, Alexanian E
. Metal-free, aerobic dioxygenation of alkenes using simple hydroxamic acid derivatives. J Am Chem Soc. 2011; 133(34):13320-2.
DOI: 10.1021/ja206306f.
View
18.
Anferov S, Filatov A, Anderson J
. Cobalt-Catalyzed Hydrogenation Reactions Enabled by Ligand-Based Storage of Dihydrogen. ACS Catal. 2022; 12(16):9933-9943.
PMC: 9396622.
DOI: 10.1021/acscatal.2c02467.
View
19.
Hong S, Lee Y, Shin W, Fukuzumi S, Nam W
. Dioxygen activation by mononuclear nonheme iron(II) complexes generates iron-oxygen intermediates in the presence of an NADH analogue and proton. J Am Chem Soc. 2009; 131(39):13910-1.
DOI: 10.1021/ja905691f.
View
20.
Bagh B, Broere D, Sinha V, Kuijpers P, van Leest N, de Bruin B
. Catalytic Synthesis of N-Heterocycles via Direct C(sp)-H Amination Using an Air-Stable Iron(III) Species with a Redox-Active Ligand. J Am Chem Soc. 2017; 139(14):5117-5124.
PMC: 5391503.
DOI: 10.1021/jacs.7b00270.
View