» Articles » PMID: 39362999

Mechanisms and Regulation of Substrate Degradation by the 26S Proteasome

Overview
Date 2024 Oct 3
PMID 39362999
Authors
Affiliations
Soon will be listed here.
Abstract

The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.

Citing Articles

Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease.

Church T, Margolis S Front Cell Dev Biol. 2025; 12:1531797.

PMID: 39990094 PMC: 11842346. DOI: 10.3389/fcell.2024.1531797.


Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential.

Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X J Hematol Oncol. 2025; 18(1):20.

PMID: 39972384 PMC: 11841355. DOI: 10.1186/s13045-025-01671-9.


Small molecule targeted protein degradation the UPS: venturing beyond E3 substrate receptors.

Guo R, Yang F, Cherney E RSC Med Chem. 2025; .

PMID: 39949641 PMC: 11815867. DOI: 10.1039/d4md00718b.


PI31 is a positive regulator of 20S immunoproteasome assembly.

Wang J, Kjellgren A, DeMartino G bioRxiv. 2025; .

PMID: 39868238 PMC: 11761684. DOI: 10.1101/2025.01.15.633194.


Hsp90α promotes lipogenesis by stabilizing FASN and promoting FASN transcription via LXRα in hepatocellular carcinoma.

Deng Z, Liu L, Xie G, Zheng Z, Li J, Tan W J Lipid Res. 2024; 66(1):100721.

PMID: 39645039 PMC: 11745951. DOI: 10.1016/j.jlr.2024.100721.

References
1.
Chen X, Dorris Z, Shi D, Huang R, Khant H, Fox T . Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Structure. 2020; 28(11):1206-1217.e4. PMC: 7642156. DOI: 10.1016/j.str.2020.07.011. View

2.
Leggett D, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R . Multiple associated proteins regulate proteasome structure and function. Mol Cell. 2002; 10(3):495-507. DOI: 10.1016/s1097-2765(02)00638-x. View

3.
Donovan K, Ferguson F, Bushman J, Eleuteri N, Bhunia D, Ryu S . Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell. 2020; 183(6):1714-1731.e10. PMC: 10294644. DOI: 10.1016/j.cell.2020.10.038. View

4.
Moir D, Stewart S, Osmond B, Botstein D . Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics. 1982; 100(4):547-63. PMC: 1201831. DOI: 10.1093/genetics/100.4.547. View

5.
Sharon Hung K, Klumpe S, Eisele M, Elsasser S, Tian G, Sun S . Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Nat Commun. 2022; 13(1):838. PMC: 8837689. DOI: 10.1038/s41467-022-28186-y. View