6.
Wang J, An M, Haubner B, Penninger J
. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med. 2023; 9:981982.
PMC: 9877631.
DOI: 10.3389/fcvm.2022.981982.
View
7.
Hashimoto H, Olson E, Bassel-Duby R
. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018; 15(10):585-600.
PMC: 6241533.
DOI: 10.1038/s41569-018-0036-6.
View
8.
Sadahiro T, Yamanaka S, Ieda M
. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015; 116(8):1378-91.
DOI: 10.1161/CIRCRESAHA.116.305374.
View
9.
Jayawardena T, Egemnazarov B, Finch E, Zhang L, Payne J, Pandya K
. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012; 110(11):1465-73.
PMC: 3380624.
DOI: 10.1161/CIRCRESAHA.112.269035.
View
10.
Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M
. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014; 33(14):1565-81.
PMC: 4198052.
DOI: 10.15252/embj.201387605.
View
11.
Wang H, Cao N, Spencer C, Nie B, Ma T, Xu T
. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 2014; 6(5):951-60.
PMC: 4004339.
DOI: 10.1016/j.celrep.2014.01.038.
View
12.
Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C
. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015; 25(9):1013-24.
PMC: 4559819.
DOI: 10.1038/cr.2015.99.
View
13.
Kelaini S, Cochrane A, Margariti A
. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014; 7:19-29.
PMC: 3931695.
DOI: 10.2147/SCCAA.S38006.
View
14.
Ieda M, Fu J, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau B
. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142(3):375-86.
PMC: 2919844.
DOI: 10.1016/j.cell.2010.07.002.
View
15.
Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y
. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res. 2014; 116(2):237-44.
PMC: 4299697.
DOI: 10.1161/CIRCRESAHA.116.305547.
View
16.
Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T
. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A. 2013; 110(31):12667-72.
PMC: 3732928.
DOI: 10.1073/pnas.1304053110.
View
17.
Zhou W, Ma T, Ding S
. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol. 2021; 122:28-36.
DOI: 10.1016/j.semcdb.2021.06.021.
View
18.
Yang X, Pabon L, Murry C
. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014; 114(3):511-23.
PMC: 3955370.
DOI: 10.1161/CIRCRESAHA.114.300558.
View
19.
Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X
. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2011; 22(1):219-36.
PMC: 3351910.
DOI: 10.1038/cr.2011.195.
View
20.
Chattergoon N, Giraud G, Louey S, Stork P, Fowden A, Thornburg K
. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 2011; 26(1):397-408.
PMC: 3250248.
DOI: 10.1096/fj.10-179895.
View