6.
Arulmoli J, Wright H, Phan D, Sheth U, Que R, Botten G
. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater. 2016; 43:122-138.
PMC: 5386322.
DOI: 10.1016/j.actbio.2016.07.043.
View
7.
Ionescu O, Mignon A, Iacob A, Simionescu N, Confederat L, Tuchilus C
. New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers (Basel). 2021; 13(8).
PMC: 8071366.
DOI: 10.3390/polym13081291.
View
8.
Xu S, Qin C, Yu M, Dong R, Yan X, Zhao H
. A battery-operated portable handheld electrospinning apparatus. Nanoscale. 2015; 7(29):12351-5.
DOI: 10.1039/c5nr02922h.
View
9.
Dong R, Jia Y, Qin C, Zhan L, Yan X, Cui L
. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale. 2016; 8(6):3482-8.
DOI: 10.1039/c5nr08367b.
View
10.
Chanda A, Adhikari J, Ghosh A, Chowdhury S, Thomas S, Datta P
. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol. 2018; 116:774-785.
DOI: 10.1016/j.ijbiomac.2018.05.099.
View
11.
Vitkova L, Musilova L, Achbergerova E, Minarik A, Smolka P, Wrzecionko E
. Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent. Polymers (Basel). 2019; 11(9).
PMC: 6780821.
DOI: 10.3390/polym11091517.
View
12.
Haik J, Kornhaber R, Blal B, Harats M
. The Feasibility of a Handheld Electrospinning Device for the Application of Nanofibrous Wound Dressings. Adv Wound Care (New Rochelle). 2017; 6(5):166-174.
PMC: 5421595.
DOI: 10.1089/wound.2016.0722.
View
13.
Bhattarai N, Edmondson D, Veiseh O, Matsen F, Zhang M
. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005; 26(31):6176-84.
DOI: 10.1016/j.biomaterials.2005.03.027.
View
14.
Yue Y, Gong X, Jiao W, Li Y, Yin X, Si Y
. In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. J Colloid Interface Sci. 2021; 592:310-318.
DOI: 10.1016/j.jcis.2021.02.048.
View
15.
Zamboni F, Keays M, Hayes S, Albadarin A, Walker G, Kiely P
. Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels. Int J Pharm. 2017; 532(1):595-602.
DOI: 10.1016/j.ijpharm.2017.09.053.
View
16.
Sun J, Perry S, Schiffman J
. Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. Biomacromolecules. 2019; 20(11):4191-4198.
DOI: 10.1021/acs.biomac.9b01072.
View
17.
Ji Y, Ghosh K, Li B, Sokolov J, Clark R, Rafailovich M
. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci. 2006; 6(10):811-7.
DOI: 10.1002/mabi.200600132.
View
18.
Yasin A, Ren Y, Li J, Sheng Y, Cao C, Zhang K
. Advances in Hyaluronic Acid for Biomedical Applications. Front Bioeng Biotechnol. 2022; 10:910290.
PMC: 9289781.
DOI: 10.3389/fbioe.2022.910290.
View
19.
Zhou C, Chu R, Wu R, Wu Q
. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules. 2011; 12(7):2617-25.
DOI: 10.1021/bm200401p.
View
20.
Ahire J, Robertson D, van Reenen A, Dicks L
. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed Pharmacother. 2016; 86:143-148.
DOI: 10.1016/j.biopha.2016.12.006.
View