6.
Steiman S, Miyake T, McDermott J
. FoxP1 Represses MEF2A in Striated Muscle. Mol Cell Biol. 2024; 44(2):57-71.
PMC: 10950271.
DOI: 10.1080/10985549.2024.2323959.
View
7.
Judge S, Deyhle M, Neyroud D, Nosacka R, DLugos A, Cameron M
. MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Res. 2020; 80(9):1861-1874.
PMC: 7250164.
DOI: 10.1158/0008-5472.CAN-19-1558.
View
8.
Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W
. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun. 2019; 10(1):5070.
PMC: 6838312.
DOI: 10.1038/s41467-019-12988-8.
View
9.
Li H, Liu P, Xu S, Li Y, Dekker J, Li B
. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017; 127(4):1241-1253.
PMC: 5373872.
DOI: 10.1172/JCI89511.
View
10.
Fearon K, Arends J, Baracos V
. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2012; 10(2):90-9.
DOI: 10.1038/nrclinonc.2012.209.
View
11.
Waisman A, Norris A, Elias Costa M, Kopinke D
. Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle. Sci Rep. 2021; 11(1):11793.
PMC: 8175575.
DOI: 10.1038/s41598-021-91191-6.
View
12.
Reed S, Sandesara P, Senf S, Judge A
. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 2011; 26(3):987-1000.
PMC: 3289501.
DOI: 10.1096/fj.11-189977.
View
13.
Fearon K, Strasser F, Anker S, Bosaeus I, Bruera E, Fainsinger R
. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011; 12(5):489-95.
DOI: 10.1016/S1470-2045(10)70218-7.
View
14.
Fu N, Pal B, Chen Y, Jackling F, Milevskiy M, Vaillant F
. Foxp1 Is Indispensable for Ductal Morphogenesis and Controls the Exit of Mammary Stem Cells from Quiescence. Dev Cell. 2018; 47(5):629-644.e8.
DOI: 10.1016/j.devcel.2018.10.001.
View
15.
Ferrara M, Samaden M, Ruggieri E, Venereau E
. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol. 2022; 10:960341.
PMC: 9493094.
DOI: 10.3389/fcell.2022.960341.
View
16.
Li S, Weidenfeld J, Morrisey E
. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol. 2004; 24(2):809-22.
PMC: 343786.
DOI: 10.1128/MCB.24.2.809-822.2004.
View
17.
Mazet F, Yu J, Liberles D, Holland L, Shimeld S
. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene. 2003; 316:79-89.
DOI: 10.1016/s0378-1119(03)00741-8.
View
18.
Judge S, Wu C, Beharry A, Roberts B, Ferreira L, Kandarian S
. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 2014; 14:997.
PMC: 4391468.
DOI: 10.1186/1471-2407-14-997.
View
19.
Zhong X, Narasimhan A, Silverman L, Young A, Shahda S, Liu S
. Sex specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice and humans: role of Activin. J Cachexia Sarcopenia Muscle. 2022; 13(4):2146-2161.
PMC: 9397557.
DOI: 10.1002/jcsm.12998.
View
20.
Hingorani S, Wang L, Multani A, Combs C, Deramaudt T, Hruban R
. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005; 7(5):469-83.
DOI: 10.1016/j.ccr.2005.04.023.
View