6.
Koska M, Kordes A, Erdmann J, Willger S, Thoming J, Bahre H
. Distinct Long- and Short-Term Adaptive Mechanisms in Pseudomonas aeruginosa. Microbiol Spectr. 2022; 10(6):e0304322.
PMC: 9769816.
DOI: 10.1128/spectrum.03043-22.
View
7.
Salmani Abyaneh A, Fazaelipoor M
. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. J Environ Manage. 2015; 165:184-187.
DOI: 10.1016/j.jenvman.2015.09.034.
View
8.
Funston S, Tsaousi K, Smyth T, Twigg M, Marchant R, Banat I
. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Appl Microbiol Biotechnol. 2017; 101(23-24):8443-8454.
PMC: 5694511.
DOI: 10.1007/s00253-017-8540-x.
View
9.
Livak K, Schmittgen T
. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2002; 25(4):402-8.
DOI: 10.1006/meth.2001.1262.
View
10.
Conceicao K, de Alencar Almeida M, Sawoniuk I, Marques G, de Sousa Faria-Tischer P, Tischer C
. Rhamnolipid production by Pseudomonas aeruginosa grown on membranes of bacterial cellulose supplemented with corn bran water extract. Environ Sci Pollut Res Int. 2020; 27(24):30222-30231.
DOI: 10.1007/s11356-020-09315-w.
View
11.
Singh A, Cameotra S
. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria. Appl Biochem Biotechnol. 2013; 170(5):1038-56.
DOI: 10.1007/s12010-013-0244-9.
View
12.
Wittgens A, Kovacic F, Muller M, Gerlitzki M, Santiago-Schubel B, Hofmann D
. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol. 2016; 101(7):2865-2878.
PMC: 5352749.
DOI: 10.1007/s00253-016-8041-3.
View
13.
Ahmed S, Rudden M, Smyth T, Dooley J, Marchant R, Banat I
. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechnol. 2019; 103(8):3521-3535.
PMC: 6449319.
DOI: 10.1007/s00253-019-09618-0.
View
14.
Gonzalez C, Ackerley D, Lynch S, Matin A
. ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem. 2005; 280(24):22590-5.
DOI: 10.1074/jbc.M501654200.
View
15.
Twigg M, Tripathi L, Zompra A, Salek K, Irorere V, Gutierrez T
. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl Microbiol Biotechnol. 2018; 102(19):8537-8549.
PMC: 6153872.
DOI: 10.1007/s00253-018-9202-3.
View
16.
Pang B, Yu H, Zhang J, Ye F, Wu H, Shang C
. Identification of differentially expressed genes for Pseudomonas sp. Cr13 stimulated by hexavalent chromium. PLoS One. 2022; 17(8):e0272528.
PMC: 9355187.
DOI: 10.1371/journal.pone.0272528.
View
17.
Lee J, Zhang L
. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2014; 6(1):26-41.
PMC: 4286720.
DOI: 10.1007/s13238-014-0100-x.
View
18.
Jin R, Liu Y, Liu G, Tian T, Qiao S, Zhou J
. Characterization of Product and Potential Mechanism of Cr(VI) Reduction by Anaerobic Activated Sludge in a Sequencing Batch Reactor. Sci Rep. 2017; 7(1):1681.
PMC: 5431812.
DOI: 10.1038/s41598-017-01885-z.
View
19.
Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W
. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol. 2010; 101(22):8599-605.
DOI: 10.1016/j.biortech.2010.06.085.
View
20.
Chrzanowski L, Lawniczak L, Czaczyk K
. Why do microorganisms produce rhamnolipids?. World J Microbiol Biotechnol. 2012; 28(2):401-19.
PMC: 3270259.
DOI: 10.1007/s11274-011-0854-8.
View