6.
Kanehisa M
. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019; 28(11):1947-1951.
PMC: 6798127.
DOI: 10.1002/pro.3715.
View
7.
Sun J, Wang Z, Lin C, Xia H, Yang L, Wang S
. The hypolipidemic mechanism of chrysanthemum flavonoids and its main components, luteolin and luteoloside, based on the gene expression profile. Front Nutr. 2022; 9:952588.
PMC: 9487889.
DOI: 10.3389/fnut.2022.952588.
View
8.
Xue G, Xue J, Zhao C, Zhao Z, Zhi Y, Du K
. 1,10-seco guaianolide-type sesquiterpenoids from . J Asian Nat Prod Res. 2020; 23(9):877-883.
DOI: 10.1080/10286020.2020.1787388.
View
9.
Miyazawa M, Hisama M
. Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci Biotechnol Biochem. 2003; 67(10):2091-9.
DOI: 10.1271/bbb.67.2091.
View
10.
Park K, Yang M, Park M, Kim S, Yang C, Park S
. A new cytotoxic guaianolide from Chrysanthemum boreale. Fitoterapia. 2008; 80(1):54-6.
DOI: 10.1016/j.fitote.2008.09.013.
View
11.
Zhang B, Li M, Shi J, Zeng M, Zhang J, Liu J
. Six sesquiterpenoids from the stems and leaves of Chrysanthemum morifolium Ramat and their anti-asthma activities. Fitoterapia. 2023; 171:105633.
DOI: 10.1016/j.fitote.2023.105633.
View
12.
Chen L, Liu Y, Huang X, Zhu Y, Li J, Miao Y
. Comparison of Chemical Constituents and Pharmacological Effects of Different Varieties of Chrysanthemum Flos in China. Chem Biodivers. 2021; 18(8):e2100206.
DOI: 10.1002/cbdv.202100206.
View
13.
Yang M, Sun S, Jia X, Wen X, Tian X, Niu Y
. Study on mechanism of hepatoprotective effect of Chrysanthemum morifolium Ramat. based on metabolomics with network analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci. 2023; 1222:123711.
DOI: 10.1016/j.jchromb.2023.123711.
View
14.
Lu H, Tian Z, Cui Y, Liu Z, Ma X
. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr Rev Food Sci Food Saf. 2020; 19(6):3130-3158.
DOI: 10.1111/1541-4337.12620.
View
15.
Liu X, Li Y, Su S, Wei D, Yan H, Guo S
. Comparative Analysis of Chemical Composition andAntibacterial and Anti-Inflammatory Activities of theEssential Oils from ofDifferent Flowering Stages and Different Parts. Evid Based Complement Alternat Med. 2022; 2022:5954963.
PMC: 9192287.
DOI: 10.1155/2022/5954963.
View
16.
Housley L, Magana A, Hsu A, Beaver L, Wong C, Stevens J
. Untargeted Metabolomic Screen Reveals Changes in Human Plasma Metabolite Profiles Following Consumption of Fresh Broccoli Sprouts. Mol Nutr Food Res. 2018; 62(19):e1700665.
PMC: 6310001.
DOI: 10.1002/mnfr.201700665.
View
17.
Han Y, Zhou M, Wang L, Ying X, Peng J, Jiang M
. Comparative evaluation of different cultivars of Flos Chrysanthemi by an anti-inflammatory-based NF-κB reporter gene assay coupled to UPLC-Q/TOF MS with PCA and ANN. J Ethnopharmacol. 2015; 174:387-95.
DOI: 10.1016/j.jep.2015.08.044.
View
18.
Hao D, Song Y, Xiao P, Zhong Y, Wu P, Xu L
. The genus : Phylogeny, biodiversity, phytometabolites, and chemodiversity. Front Plant Sci. 2022; 13:973197.
PMC: 9403765.
DOI: 10.3389/fpls.2022.973197.
View
19.
Wang Z, Wu J, Sun Z, Jiang W, Liu Y, Tang J
. ICP-MS based metallomics and GC-MS based metabolomics reveals the physiological and metabolic responses of plants exposed to FeO nanoparticles. Front Nutr. 2022; 9:1013756.
PMC: 9558897.
DOI: 10.3389/fnut.2022.1013756.
View
20.
Franza L, Carusi V, Nucera E, Pandolfi F
. Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors. 2021; 47(2):181-189.
DOI: 10.1002/biof.1710.
View