6.
Visel A, Blow M, Li Z, Zhang T, Akiyama J, Holt A
. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009; 457(7231):854-8.
PMC: 2745234.
DOI: 10.1038/nature07730.
View
7.
Testa A, Hughes S, Lucas X, Wright J, Ciulli A
. Structure-Based Design of a Macrocyclic PROTAC. Angew Chem Int Ed Engl. 2019; 59(4):1727-1734.
PMC: 7004083.
DOI: 10.1002/anie.201914396.
View
8.
Durbin A, Wang T, Wimalasena V, Zimmerman M, Li D, Dharia N
. EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov. 2021; 12(3):730-751.
PMC: 8904277.
DOI: 10.1158/2159-8290.CD-21-0385.
View
9.
Attar N, Kurdistani S
. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med. 2016; 7(3).
PMC: 5334244.
DOI: 10.1101/cshperspect.a026534.
View
10.
Atilaw Y, Poongavanam V, Nilsson C, Nguyen D, Giese A, Meibom D
. Solution Conformations Shed Light on PROTAC Cell Permeability. ACS Med Chem Lett. 2021; 12(1):107-114.
PMC: 7812666.
DOI: 10.1021/acsmedchemlett.0c00556.
View
11.
Vannam R, Sayilgan J, Ojeda S, Karakyriakou B, Hu E, Kreuzer J
. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chem Biol. 2021; 28(4):503-514.e12.
DOI: 10.1016/j.chembiol.2020.12.004.
View
12.
Wilson J, Patel G, Patel C, Brucelle F, Huhn A, Gardberg A
. Discovery of CPI-1612: A Potent, Selective, and Orally Bioavailable EP300/CBP Histone Acetyltransferase Inhibitor. ACS Med Chem Lett. 2020; 11(6):1324-1329.
PMC: 7294707.
DOI: 10.1021/acsmedchemlett.0c00155.
View
13.
Huang D, Luthi U, Kolb P, Cecchini M, Barberis A, Caflisch A
. In silico discovery of beta-secretase inhibitors. J Am Chem Soc. 2006; 128(16):5436-43.
DOI: 10.1021/ja0573108.
View
14.
Maple H, Clayden N, Baron A, Stacey C, Felix R
. Developing degraders: principles and perspectives on design and chemical space. Medchemcomm. 2019; 10(10):1755-1764.
PMC: 6894040.
DOI: 10.1039/c9md00272c.
View
15.
Thomas 2nd J, Wang M, Jiang W, Wang M, Wang L, Wen B
. Discovery of Exceptionally Potent, Selective, and Efficacious PROTAC Degraders of CBP and p300 Proteins. J Med Chem. 2023; 66(12):8178-8199.
DOI: 10.1021/acs.jmedchem.3c00492.
View
16.
Goossens K, Wroblowski B, Langini C, van Vlijmen H, Caflisch A, De Winter H
. Assessment of the Fragment Docking Program SEED. J Chem Inf Model. 2020; 60(10):4881-4893.
DOI: 10.1021/acs.jcim.0c00556.
View
17.
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J
. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2009; 31(4):671-90.
PMC: 2888302.
DOI: 10.1002/jcc.21367.
View
18.
Lai A, Crews C
. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2016; 16(2):101-114.
PMC: 5684876.
DOI: 10.1038/nrd.2016.211.
View
19.
Klein V, Bond A, Craigon C, Lokey R, Ciulli A
. Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. J Med Chem. 2021; 64(24):18082-18101.
PMC: 8713283.
DOI: 10.1021/acs.jmedchem.1c01496.
View
20.
Watanabe T, Seki T, Fukano T, Sakaue-Sawano A, Karasawa S, Kubota M
. Genetic visualization of protein interactions harnessing liquid phase transitions. Sci Rep. 2017; 7:46380.
PMC: 5390312.
DOI: 10.1038/srep46380.
View