» Articles » PMID: 39326419

Discovery and Characterization of a Pan-betacoronavirus S2-binding Antibody

Abstract

The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

Citing Articles

Unveiling the Complete Spectrum of SARS-CoV-2 Fusion Stages by In Situ Cryo-ET.

Akil C, Xu J, Shen J, Zhang P bioRxiv. 2025; .

PMID: 40060467 PMC: 11888396. DOI: 10.1101/2025.02.25.640151.


Structural Immunology of SARS-CoV-2.

Yuan M, Wilson I Immunol Rev. 2024; 329(1):e13431.

PMID: 39731211 PMC: 11727448. DOI: 10.1111/imr.13431.


Broad Neutralization Capacity of an Engineered Thermostable Three-Helix Angiotensin-Converting Enzyme 2 Polypeptide Targeting the Receptor-Binding Domain of SARS-CoV-2.

Cavazzini D, Levati E, Germani S, Ta B, Monica L, Bolchi A Int J Mol Sci. 2024; 25(22).

PMID: 39596383 PMC: 11594380. DOI: 10.3390/ijms252212319.


Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches.

Abba Moussa D, Vazquez M, Chable-Bessia C, Roux-Portalez V, Tamagnini E, Pedotti M Emerg Microbes Infect. 2024; 14(1):2432345.

PMID: 39584380 PMC: 11632933. DOI: 10.1080/22221751.2024.2432345.


Fast-Track Discovery of SARS-CoV-2-Neutralizing Antibodies from Human B Cells by Direct Functional Screening.

Hillenbrand M, Esslinger C, Seidenberg J, Weber M, Zingg A, Townsend C Viruses. 2024; 16(3).

PMID: 38543705 PMC: 10975424. DOI: 10.3390/v16030339.

References
1.
Pinto D, Park Y, Beltramello M, Walls A, Tortorici M, Bianchi S . Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020; 583(7815):290-295. DOI: 10.1038/s41586-020-2349-y. View

2.
Fuentes M, Durham S, Swerdel M, Lewin A, Barton D, Megill J . Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol. 1995; 155(12):5769-76. View

3.
Claireaux M, Caniels T, de Gast M, Han J, Guerra D, Kerster G . A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat Commun. 2022; 13(1):4539. PMC: 9352689. DOI: 10.1038/s41467-022-32232-0. View

4.
Dacon C, Peng L, Lin T, Tucker C, Lee C, Cong Y . Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host Microbe. 2022; 31(1):97-111.e12. PMC: 9639329. DOI: 10.1016/j.chom.2022.10.010. View

5.
Kabsch W, Sander C . Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22(12):2577-637. DOI: 10.1002/bip.360221211. View