» Articles » PMID: 38378768

Prefusion-stabilized SARS-CoV-2 S2-only Antigen Provides Protection Against SARS-CoV-2 Challenge

Abstract

Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.

Citing Articles

Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus.

Adeleke R, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S Sci Adv. 2025; 11(5):eadq4545.

PMID: 39879304 PMC: 11777205. DOI: 10.1126/sciadv.adq4545.


Multivalent S2 subunit vaccines provide broad protection against Clade 1 sarbecoviruses in female mice.

Halfmann P, Patel R, Loeffler K, Yasuhara A, Van de Velde L, Yang J Nat Commun. 2025; 16(1):462.

PMID: 39774966 PMC: 11706982. DOI: 10.1038/s41467-025-55824-y.


Mechanistic insights into structure-based design of a Lyme disease subunit vaccine.

Brangulis K, Malfetano J, Marcinkiewicz A, Wang A, Chen Y, Lee J bioRxiv. 2024; .

PMID: 39554036 PMC: 11565809. DOI: 10.1101/2024.10.23.619738.


Engineered protein subunit COVID19 vaccine is as immunogenic as nanoparticles in mouse and hamster models.

Matthews M, Kim T, Kim K, Meshcheryakov V, Iha H, Tamai M Sci Rep. 2024; 14(1):25528.

PMID: 39462119 PMC: 11512993. DOI: 10.1038/s41598-024-76377-y.


Advanced technologies for the development of infectious disease vaccines.

Gupta A, Rudra A, Reed K, Langer R, Anderson D Nat Rev Drug Discov. 2024; 23(12):914-938.

PMID: 39433939 DOI: 10.1038/s41573-024-01041-z.


References
1.
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson I, Kanekiyo M . Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities. ACS Cent Sci. 2023; 8(12):1646-1663. PMC: 9801513. DOI: 10.1021/acscentsci.2c00981. View

2.
Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F . Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host Microbe. 2019; 26(5):623-637.e8. PMC: 6854463. DOI: 10.1016/j.chom.2019.09.016. View

3.
Claireaux M, Caniels T, de Gast M, Han J, Guerra D, Kerster G . A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat Commun. 2022; 13(1):4539. PMC: 9352689. DOI: 10.1038/s41467-022-32232-0. View

4.
Dacon C, Peng L, Lin T, Tucker C, Lee C, Cong Y . Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host Microbe. 2022; 31(1):97-111.e12. PMC: 9639329. DOI: 10.1016/j.chom.2022.10.010. View

5.
Evans P, Murshudov G . How good are my data and what is the resolution?. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 7):1204-14. PMC: 3689523. DOI: 10.1107/S0907444913000061. View