6.
Soares S, Sousa J, Pais A, Vitorino C
. Nanomedicine: Principles, Properties, and Regulatory Issues. Front Chem. 2018; 6:360.
PMC: 6109690.
DOI: 10.3389/fchem.2018.00360.
View
7.
Yusuf A, Almotairy A, Henidi H, Alshehri O, Aldughaim M
. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems. Polymers (Basel). 2023; 15(7).
PMC: 10096782.
DOI: 10.3390/polym15071596.
View
8.
Al-Kassas R, Bansal M, Shaw J
. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017; 260:202-212.
DOI: 10.1016/j.jconrel.2017.06.003.
View
9.
Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y
. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int J Nanomedicine. 2020; 15:6295-6310.
PMC: 7455773.
DOI: 10.2147/IJN.S257269.
View
10.
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y
. An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol. 2017; 46(6):1111-1121.
DOI: 10.1080/21691401.2017.1379014.
View
11.
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin M
. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond). 2018; 14(1):93-126.
PMC: 6391637.
DOI: 10.2217/nnm-2018-0120.
View
12.
Muringayil Joseph T, Mahapatra D, Esmaeili A, Piszczyk L, Hasanin M, Kattali M
. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials (Basel). 2023; 13(3).
PMC: 9920911.
DOI: 10.3390/nano13030574.
View
13.
Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S
. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016; 238:176-185.
PMC: 5289391.
DOI: 10.1016/j.jconrel.2016.07.051.
View
14.
Rizvi S, Saleh A
. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018; 26(1):64-70.
PMC: 5783816.
DOI: 10.1016/j.jsps.2017.10.012.
View
15.
Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, AlKilany A, Chakraborty I
. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev. 2019; 119(8):4819-4880.
DOI: 10.1021/acs.chemrev.8b00733.
View
16.
Szeto G, Lavik E
. Materials design at the interface of nanoparticles and innate immunity. J Mater Chem B. 2016; 4(9):1610-1618.
PMC: 4950994.
DOI: 10.1039/C5TB01825K.
View
17.
Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A
. Size, shape, charge and "stealthy" surface: Carrier properties affect the drug circulation time . Asian J Pharm Sci. 2021; 16(4):444-458.
PMC: 8520042.
DOI: 10.1016/j.ajps.2020.07.005.
View
18.
Suk J, Xu Q, Kim N, Hanes J, Ensign L
. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2015; 99(Pt A):28-51.
PMC: 4798869.
DOI: 10.1016/j.addr.2015.09.012.
View
19.
Clogston J, Patri A
. Zeta potential measurement. Methods Mol Biol. 2010; 697:63-70.
DOI: 10.1007/978-1-60327-198-1_6.
View
20.
Awashra M, Mlynarz P
. The toxicity of nanoparticles and their interaction with cells: an metabolomic perspective. Nanoscale Adv. 2023; 5(10):2674-2723.
PMC: 10186990.
DOI: 10.1039/d2na00534d.
View