6.
Li Y, Wood J, Ji L, Chow S, Oravecz Z
. Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus. Struct Equ Modeling. 2022; 29(3):452-475.
PMC: 9122119.
DOI: 10.1080/10705511.2021.1911657.
View
7.
Depaoli S, van de Schoot R
. Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychol Methods. 2015; 22(2):240-261.
DOI: 10.1037/met0000065.
View
8.
Hamaker E, Asparouhov T, Brose A, Schmiedek F, Muthen B
. At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study. Multivariate Behav Res. 2018; 53(6):820-841.
DOI: 10.1080/00273171.2018.1446819.
View
9.
McNeish D
. Two-Level Dynamic Structural Equation Models with Small Samples. Struct Equ Modeling. 2020; 26(6):948-966.
PMC: 7451754.
DOI: 10.1080/10705511.2019.1578657.
View
10.
Ji L, Chen M, Oravecz Z, Cummings E, Lu Z, Chow S
. A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes. Struct Equ Modeling. 2020; 27(3):442-467.
PMC: 7323924.
DOI: 10.1080/10705511.2019.1623681.
View
11.
Hallquist M, Wiley J
. : An Package for Facilitating Large-Scale Latent Variable Analyses in . Struct Equ Modeling. 2018; 25(4):621-638.
PMC: 6075832.
DOI: 10.1080/10705511.2017.1402334.
View
12.
Zhang Q, Wang L, Bergeman C
. Multilevel autoregressive mediation models: Specification, estimation, and applications. Psychol Methods. 2017; 23(2):278-297.
DOI: 10.1037/met0000161.
View
13.
McNeish D, MacKinnon D, Marsch L, Poldrack R
. Measurement in Intensive Longitudinal Data. Struct Equ Modeling. 2021; 28(5):807-822.
PMC: 8562472.
DOI: 10.1080/10705511.2021.1915788.
View
14.
Jongerling J, Laurenceau J, Hamaker E
. A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance. Multivariate Behav Res. 2015; 50(3):334-49.
DOI: 10.1080/00273171.2014.1003772.
View
15.
Eijkman E
. Psychophysical system identification by correlation methods. Br J Math Stat Psychol. 1978; 31(2):229-46.
DOI: 10.1111/j.2044-8317.1978.tb00587.x.
View
16.
Graham J, Taylor B, Olchowski A, Cumsille P
. Planned missing data designs in psychological research. Psychol Methods. 2006; 11(4):323-43.
DOI: 10.1037/1082-989X.11.4.323.
View
17.
Liu S, Molenaar P
. iVAR: a program for imputing missing data in multivariate time series using vector autoregressive models. Behav Res Methods. 2014; 46(4):1138-48.
DOI: 10.3758/s13428-014-0444-4.
View
18.
Hedeker D, Mermelstein R, Demirtas H
. An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data. Biometrics. 2007; 64(2):627-34.
PMC: 2424261.
DOI: 10.1111/j.1541-0420.2007.00924.x.
View
19.
Wang L, Hamaker E, Bergeman C
. Investigating inter-individual differences in short-term intra-individual variability. Psychol Methods. 2012; 17(4):567-81.
PMC: 3684184.
DOI: 10.1037/a0029317.
View
20.
Schuurman N, Ferrer E, de Boer-Sonnenschein M, Hamaker E
. How to compare cross-lagged associations in a multilevel autoregressive model. Psychol Methods. 2016; 21(2):206-21.
DOI: 10.1037/met0000062.
View