6.
Wang L, Wei K, Cheng H, He W, Li X, Gong W
. Geographical tracing of Xihu Longjing tea using high performance liquid chromatography. Food Chem. 2013; 146:98-103.
DOI: 10.1016/j.foodchem.2013.09.043.
View
7.
Le Gall G, Colquhoun I, Defernez M
. Metabolite profiling using (1)H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J Agric Food Chem. 2004; 52(4):692-700.
DOI: 10.1021/jf034828r.
View
8.
Jin G, Zhu Y, Cui C, Yang C, Hu S, Cai H
. Tracing the origin of Taiping Houkui green tea using H NMR and HS-SPME-GC-MS chemical fingerprints, data fusion and chemometrics. Food Chem. 2023; 425:136538.
DOI: 10.1016/j.foodchem.2023.136538.
View
9.
Farag M, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah H
. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem. 2022; 404(Pt B):134628.
DOI: 10.1016/j.foodchem.2022.134628.
View
10.
Zhang Q, Li T, Wang Q, LeCompte J, Harkess R, Bi G
. Screening Tea Cultivars for Novel Climates: Plant Growth and Leaf Quality of Cultivars Grown in Mississippi, United States. Front Plant Sci. 2020; 11:280.
PMC: 7083152.
DOI: 10.3389/fpls.2020.00280.
View
11.
Yu X, Li J, Yang Y, Zhu J, Yuan H, Jiang Y
. Comprehensive investigation on flavonoids metabolites of Longjing tea in different cultivars, geographical origins, and storage time. Heliyon. 2023; 9(6):e17305.
PMC: 10329133.
DOI: 10.1016/j.heliyon.2023.e17305.
View
12.
Tarachiwin L, Ute K, Kobayashi A, Fukusaki E
. 1H NMR based metabolic profiling in the evaluation of Japanese green tea quality. J Agric Food Chem. 2007; 55(23):9330-6.
DOI: 10.1021/jf071956x.
View
13.
Zeng L, Fu Y, Gao Y, Wang F, Liang S, Yin J
. Dynamic changes of key metabolites in Longjing green tea during processing revealed by widely targeted metabolomic profiling and sensory experiments. Food Chem. 2024; 450:139373.
DOI: 10.1016/j.foodchem.2024.139373.
View
14.
Worley B, Powers R
. PCA as a practical indicator of OPLS-DA model reliability. Curr Metabolomics. 2016; 4(2):97-103.
PMC: 4990351.
DOI: 10.2174/2213235X04666160613122429.
View
15.
Shevchuk A, Jayasinghe L, Kuhnert N
. Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Res Int. 2018; 109:387-402.
DOI: 10.1016/j.foodres.2018.03.059.
View
16.
Zhang L, Dai H, Zhang J, Zheng Z, Song B, Chen J
. A Study on Origin Traceability of White Tea (White Peony) Based on Near-Infrared Spectroscopy and Machine Learning Algorithms. Foods. 2023; 12(3).
PMC: 9914092.
DOI: 10.3390/foods12030499.
View
17.
Lee J, Lee B, Chung J, Kim H, Kim E, Jung S
. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem. 2014; 174:452-9.
DOI: 10.1016/j.foodchem.2014.11.086.
View
18.
Estoup A, Lombaert E, Marin J, Guillemaud T, Pudlo P, Robert C
. Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. Mol Ecol Resour. 2012; 12(5):846-55.
DOI: 10.1111/j.1755-0998.2012.03153.x.
View
19.
Lee J, Lee B, Chung J, Hwang J, Lee S, Lee C
. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a (1)H NMR-based metabolomics study. J Agric Food Chem. 2010; 58(19):10582-9.
DOI: 10.1021/jf102415m.
View
20.
Yun J, Cui C, Zhang S, Zhu J, Peng C, Cai H
. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021; 360:130033.
DOI: 10.1016/j.foodchem.2021.130033.
View