6.
Schier A, Talbot W
. Molecular genetics of axis formation in zebrafish. Annu Rev Genet. 2005; 39:561-613.
DOI: 10.1146/annurev.genet.37.110801.143752.
View
7.
Paik E, Mahony S, White R, Price E, DiBiase A, Dorjsuren B
. A Cdx4-Sall4 regulatory module controls the transition from mesoderm formation to embryonic hematopoiesis. Stem Cell Reports. 2013; 1(5):425-36.
PMC: 3841246.
DOI: 10.1016/j.stemcr.2013.10.001.
View
8.
Kotliar D, Veres A, Nagy M, Tabrizi S, Hodis E, Melton D
. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife. 2019; 8.
PMC: 6639075.
DOI: 10.7554/eLife.43803.
View
9.
Stuart T, Srivastava A, Madad S, Lareau C, Satija R
. Single-cell chromatin state analysis with Signac. Nat Methods. 2021; 18(11):1333-1341.
PMC: 9255697.
DOI: 10.1038/s41592-021-01282-5.
View
10.
Gonzalez-Blas C, De Winter S, Hulselmans G, Hecker N, Matetovici I, Christiaens V
. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods. 2023; 20(9):1355-1367.
PMC: 10482700.
DOI: 10.1038/s41592-023-01938-4.
View
11.
Granja J, Corces M, Pierce S, Bagdatli S, Choudhry H, Chang H
. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021; 53(3):403-411.
PMC: 8012210.
DOI: 10.1038/s41588-021-00790-6.
View
12.
Ameen M, Sundaram L, Shen M, Banerjee A, Kundu S, Nair S
. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell. 2022; 185(26):4937-4953.e23.
PMC: 10122433.
DOI: 10.1016/j.cell.2022.11.028.
View
13.
Wei B, Jolma A, Sahu B, Orre L, Zhong F, Zhu F
. A protein activity assay to measure global transcription factor activity reveals determinants of chromatin accessibility. Nat Biotechnol. 2018; 36(6):521-529.
DOI: 10.1038/nbt.4138.
View
14.
Saunders L, Srivatsan S, Duran M, Dorrity M, Ewing B, Linbo T
. Embryo-scale reverse genetics at single-cell resolution. Nature. 2023; 623(7988):782-791.
PMC: 10665197.
DOI: 10.1038/s41586-023-06720-2.
View
15.
Farrell J, Wang Y, Riesenfeld S, Shekhar K, Regev A, Schier A
. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 2018; 360(6392).
PMC: 6247916.
DOI: 10.1126/science.aar3131.
View
16.
Badia-I-Mompel P, Wessels L, Muller-Dott S, Trimbour R, Ramirez Flores R, Argelaguet R
. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet. 2023; 24(11):739-754.
DOI: 10.1038/s41576-023-00618-5.
View
17.
Sawada A, Fritz A, Jiang Y, Yamamoto A, Yamasu K, Kuroiwa A
. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development. 2000; 127(8):1691-702.
DOI: 10.1242/dev.127.8.1691.
View
18.
Sabel J, dAlencon C, OBrien E, Van Otterloo E, Lutz K, Cuykendall T
. Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Dev Biol. 2008; 325(1):249-62.
PMC: 2706144.
DOI: 10.1016/j.ydbio.2008.10.031.
View
19.
Sun K, Liu X, Xu R, Liu C, Meng A, Lan X
. Mapping the chromatin accessibility landscape of zebrafish embryogenesis at single-cell resolution by SPATAC-seq. Nat Cell Biol. 2024; 26(7):1187-1199.
DOI: 10.1038/s41556-024-01449-0.
View
20.
Palfy M, Schulze G, Valen E, Vastenhouw N
. Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation. PLoS Genet. 2020; 16(1):e1008546.
PMC: 6986763.
DOI: 10.1371/journal.pgen.1008546.
View