Zongertinib (BI 1810631), an Irreversible HER2 TKI, Spares EGFR Signaling and Improves Therapeutic Response in Preclinical Models and Patients with HER2-Driven Cancers
Overview
Authors
Affiliations
Mutations in ERBB2 (encoding HER2) occur in 2% to 4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2-mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor. Zongertinib potently and selectively blocks HER2, while sparing EGFR, and inhibits the growth of cells dependent on HER2 oncogenic driver events, including HER2-dependent human cancer cells resistant to trastuzumab deruxtecan. Zongertinib displays potent antitumor activity in HER2-dependent human NSCLC xenograft models and enhances the activities of antibody-drug conjugates and KRASG12C inhibitors without causing obvious toxicities. The preclinical efficacy of zongertinib translates in objective responses in patients with HER2-dependent tumors, including cholangiocarcinoma (SDC4-NRG1 fusion) and breast cancer (V777L HER2 mutation), thus supporting the ongoing clinical development of zongertinib. Significance: HER2-mutant NSCLC poses a challenge in the clinic due to limited options for targeted therapies. Pan-ERBB blockers are limited by wild-type EGFR-mediated toxicity. Zongertinib is a highly potent and wild-type EGFR-sparing HER2 inhibitor that is active in HER2-driven tumors in the preclinical and clinical settings.
Comprehensive characterization of early-onset lung cancer, in Chinese young adults.
Tian Y, Ma R, Zhao W, Wang S, Zhou C, Wu W Nat Commun. 2025; 16(1):1976.
PMID: 40000630 PMC: 11861273. DOI: 10.1038/s41467-025-57309-4.
Aoki Y, Nakayama I, Shitara K Curr Oncol Rep. 2025; 27(1):15-29.
PMID: 39753814 DOI: 10.1007/s11912-024-01626-2.