» Articles » PMID: 39215100

µMap Proximity Labeling in Living Cells Reveals Stress Granule Disassembly Mechanisms

Overview
Journal Nat Chem Biol
Date 2024 Aug 30
PMID 39215100
Authors
Affiliations
Soon will be listed here.
Abstract

Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases ITCH and NEDD4L, as well as the ubiquitin receptor toll-interacting protein TOLLIP, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.

Citing Articles

The adaptor protein AP-3β disassembles heat-induced stress granules via 19S regulatory particle in Arabidopsis.

Pang L, Huang Y, He Y, Jiang D, Li R Nat Commun. 2025; 16(1):2039.

PMID: 40016204 PMC: 11868639. DOI: 10.1038/s41467-025-57306-7.


Temporal Microenvironment Mapping (μMap) of Intracellular Trafficking Pathways of Cell-Penetrating Peptides Across the Blood-Brain Barrier.

Morgan D, Knutson S, Pan C, MacMillan D bioRxiv. 2025; .

PMID: 39868165 PMC: 11761369. DOI: 10.1101/2025.01.15.633151.


Parallel Proteomic and Transcriptomic Microenvironment Mapping (μMap) of Nuclear Condensates in Living Cells.

Knutson S, Pan C, Bisballe N, Bloomer B, Raftopolous P, Saridakis I J Am Chem Soc. 2024; 147(1):488-497.

PMID: 39707993 PMC: 11792175. DOI: 10.1021/jacs.4c11612.


Amino acids modulate liquid-liquid phase separation in vitro and in vivo by regulating protein-protein interactions.

Xu X, Rebane A, Roset Julia L, Rosowski K, Dufresne E, Stellacci F Proc Natl Acad Sci U S A. 2024; 121(50):e2407633121.

PMID: 39642205 PMC: 11648668. DOI: 10.1073/pnas.2407633121.


Small Molecule Modulator of the mTORC2 Pathway Discovered from a DEL Library Designed to Bind to Pleckstrin Homology Domains.

Gonse A, Gajic J, Daguer J, Barluenga S, Loewith R, Winssinger N ACS Chem Biol. 2024; 19(12):2502-2514.

PMID: 39530383 PMC: 11667669. DOI: 10.1021/acschembio.4c00597.

References
1.
Buchan J, Parker R . Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2010; 36(6):932-41. PMC: 2813218. DOI: 10.1016/j.molcel.2009.11.020. View

2.
Moon S, Morisaki T, Khong A, Lyon K, Parker R, Stasevich T . Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat Cell Biol. 2019; 21(2):162-168. PMC: 6375083. DOI: 10.1038/s41556-018-0263-4. View

3.
Shoji-Kawata S, Sumpter R, Leveno M, Campbell G, Zou Z, Kinch L . Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013; 494(7436):201-6. PMC: 3788641. DOI: 10.1038/nature11866. View

4.
Wolozin B, Ivanov P . Stress granules and neurodegeneration. Nat Rev Neurosci. 2019; 20(11):649-666. PMC: 6986315. DOI: 10.1038/s41583-019-0222-5. View

5.
Yang C, Wang Z, Kang Y, Yi Q, Wang T, Bai Y . Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy. 2023; 19(7):1934-1951. PMC: 10283440. DOI: 10.1080/15548627.2022.2164427. View