6.
Pittet M, Michielin O, Migliorini D
. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022; 19(6):402-421.
DOI: 10.1038/s41571-022-00620-6.
View
7.
Huang Z, Johnson T, Han Z, Helm B, Cao S, Zhang C
. Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations. BMC Med Genomics. 2020; 13(Suppl 5):41.
PMC: 7118823.
DOI: 10.1186/s12920-020-0686-1.
View
8.
Chen Q, Yin H, Liu S, Shoucair S, Ding N, Ji Y
. Prognostic value of tumor-associated N1/N2 neutrophil plasticity in patients following radical resection of pancreas ductal adenocarcinoma. J Immunother Cancer. 2023; 10(12).
PMC: 9730407.
DOI: 10.1136/jitc-2022-005798.
View
9.
Brummel K, Eerkens A, de Bruyn M, Nijman H
. Tumour-infiltrating lymphocytes: from prognosis to treatment selection. Br J Cancer. 2022; 128(3):451-458.
PMC: 9938191.
DOI: 10.1038/s41416-022-02119-4.
View
10.
Rakaee M, Adib E, Ricciuti B, Sholl L, Shi W, Alessi J
. Association of Machine Learning-Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images With Outcomes of Immunotherapy in Patients With NSCLC. JAMA Oncol. 2022; 9(1):51-60.
PMC: 9673028.
DOI: 10.1001/jamaoncol.2022.4933.
View
11.
Walsh L, Quail D
. Decoding the tumor microenvironment with spatial technologies. Nat Immunol. 2023; 24(12):1982-1993.
DOI: 10.1038/s41590-023-01678-9.
View
12.
Heppner B, Untch M, Denkert C, Pfitzner B, Lederer B, Schmitt W
. Tumor-Infiltrating Lymphocytes: A Predictive and Prognostic Biomarker in Neoadjuvant-Treated HER2-Positive Breast Cancer. Clin Cancer Res. 2016; 22(23):5747-5754.
DOI: 10.1158/1078-0432.CCR-15-2338.
View
13.
Khorana A, Ryan C, Cox C, Eberly S, Sahasrabudhe D
. Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with Stage II and Stage III colon carcinoma: a role for the host response in prognosis. Cancer. 2003; 97(4):960-8.
DOI: 10.1002/cncr.11152.
View
14.
Elhanani O, Ben-Uri R, Keren L
. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023; 41(3):404-420.
DOI: 10.1016/j.ccell.2023.01.010.
View
15.
Junttila M, de Sauvage F
. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013; 501(7467):346-54.
DOI: 10.1038/nature12626.
View
16.
Arvaniti E, Claassen M
. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat Commun. 2017; 8:14825.
PMC: 5384229.
DOI: 10.1038/ncomms14825.
View
17.
Gurcan M, Pan T, Shimada H, Saltz J
. Image analysis for neuroblastoma classification: segmentation of cell nuclei. Conf Proc IEEE Eng Med Biol Soc. 2007; 2006:4844-7.
DOI: 10.1109/IEMBS.2006.260837.
View
18.
Kather J, Pearson A, Halama N, Jager D, Krause J, Loosen S
. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019; 25(7):1054-1056.
PMC: 7423299.
DOI: 10.1038/s41591-019-0462-y.
View
19.
Pure E, Blomberg R
. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene. 2018; 37(32):4343-4357.
PMC: 6092565.
DOI: 10.1038/s41388-018-0275-3.
View
20.
Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D
. Deep learning for cellular image analysis. Nat Methods. 2019; 16(12):1233-1246.
PMC: 8759575.
DOI: 10.1038/s41592-019-0403-1.
View