» Articles » PMID: 39196108

A Guide for Assessment of Myocardial Stiffness in Health and Disease

Abstract

Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.

Citing Articles

Mechanical loading reveals an intrinsic cardiomyocyte stiffness contribution to diastolic dysfunction in murine cardiometabolic disease.

Janssens J, Raaijmakers A, Koutsifeli P, Weeks K, Bell J, Van Eyk J J Physiol. 2024; 602(24):6705-6727.

PMID: 39629708 PMC: 11649524. DOI: 10.1113/JP286437.


ALPK2 prevents cardiac diastolic dysfunction in heart failure with preserved ejection fraction.

Yoshida T, Yoshida S, Inukai K, Kato K, Yura Y, Hattori T FASEB J. 2024; 38(22):e70192.

PMID: 39556326 PMC: 11599786. DOI: 10.1096/fj.202402103R.


Soft, strong, tough, and durable bio-hydrogels via maximizing elastic entropy.

Liu D, Feng S, Huang Q, Sun S, Dong G, Long F Adv Funct Mater. 2024; 33(28).

PMID: 39399778 PMC: 11469578. DOI: 10.1002/adfm.202300426.


The pericardium forms as a distinct structure during heart formation.

Moran H, Nyarko O, ORourke R, Ching R, Riemslagh F, Pena B bioRxiv. 2024; .

PMID: 39345600 PMC: 11429720. DOI: 10.1101/2024.09.18.613484.


Titin governs myocardial passive stiffness with major support from microtubules and actin and the extracellular matrix.

Loescher C, Freundt J, Unger A, Hessel A, Kuhn M, Koser F Nat Cardiovasc Res. 2024; 2(11):991-1002.

PMID: 39196092 PMC: 11358001. DOI: 10.1038/s44161-023-00348-1.


References
1.
Ferreira-Martins J, Leite-Moreira A . Physiologic basis and pathophysiologic implications of the diastolic properties of the cardiac muscle. J Biomed Biotechnol. 2010; 2010:807084. PMC: 2896897. DOI: 10.1155/2010/807084. View

2.
Nowicki A, Dobruch-Sobczak K . Introduction to ultrasound elastography. J Ultrason. 2016; 16(65):113-24. PMC: 4954857. DOI: 10.15557/JoU.2016.0013. View

3.
Voigt J . Direct Stiffness Measurements by Echocardiography: Does the Search for the Holy Grail Come to an End?. JACC Cardiovasc Imaging. 2018; 12(7 Pt 1):1146-1148. DOI: 10.1016/j.jcmg.2018.02.004. View

4.
Boyer G, Molimard J, Ben Tkaya M, Zahouani H, Pericoi M, Avril S . Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device. J Mech Behav Biomed Mater. 2013; 27:273-82. DOI: 10.1016/j.jmbbm.2013.05.024. View

5.
Ahmed S, Lindsey M . Titin phosphorylation: myocardial passive stiffness regulated by the intracellular giant. Circ Res. 2009; 105(7):611-3. PMC: 2765037. DOI: 10.1161/CIRCRESAHA.109.206912. View