6.
Sun W, Han H, Deng L, Sun C, Xu Y, Lin L
. Mediator Subunit MED25 Physically Interacts with PHYTOCHROME INTERACTING FACTOR4 to Regulate Shade-Induced Hypocotyl Elongation in Tomato. Plant Physiol. 2020; 184(3):1549-1562.
PMC: 7608172.
DOI: 10.1104/pp.20.00587.
View
7.
Jung J, Domijan M, Klose C, Biswas S, Ezer D, Gao M
. Phytochromes function as thermosensors in Arabidopsis. Science. 2016; 354(6314):886-889.
DOI: 10.1126/science.aaf6005.
View
8.
Xu X, Paik I, Zhu L, Huq E
. Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. Trends Plant Sci. 2015; 20(10):641-650.
DOI: 10.1016/j.tplants.2015.06.010.
View
9.
Wei Z, Yuan T, Tarkowska D, Kim J, Nam H, Novak O
. Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5. Plant Physiol. 2017; 174(2):1260-1273.
PMC: 5462011.
DOI: 10.1104/pp.16.01778.
View
10.
Park Y, Lee H, Ha J, Kim J, Park C
. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 2017; 215(1):269-280.
DOI: 10.1111/nph.14581.
View
11.
Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z
. BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis. Plant Cell. 2019; 31(11):2682-2696.
PMC: 6881119.
DOI: 10.1105/tpc.19.00058.
View
12.
Qi L, Shi Y, Terzaghi W, Yang S, Li J
. Integration of light and temperature signaling pathways in plants. J Integr Plant Biol. 2022; 64(2):393-411.
DOI: 10.1111/jipb.13216.
View
13.
Xu X, Hotta C, Dodd A, Love J, Sharrock R, Lee Y
. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell. 2007; 19(11):3474-90.
PMC: 2174886.
DOI: 10.1105/tpc.106.046011.
View
14.
Zhao X, Wang Y, Qiao X, Wang J, Wang L, Xu C
. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol. 2013; 162(3):1539-51.
PMC: 3700674.
DOI: 10.1104/pp.113.216556.
View
15.
Gangappa S, Botto J
. The Multifaceted Roles of HY5 in Plant Growth and Development. Mol Plant. 2016; 9(10):1353-1365.
DOI: 10.1016/j.molp.2016.07.002.
View
16.
Dong H, Wang J, Song X, Hu C, Zhu C, Sun T
. HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth. Proc Natl Acad Sci U S A. 2023; 120(16):e2301879120.
PMC: 10120035.
DOI: 10.1073/pnas.2301879120.
View
17.
Zhao H, Bao Y
. PIF4: Integrator of light and temperature cues in plant growth. Plant Sci. 2021; 313:111086.
DOI: 10.1016/j.plantsci.2021.111086.
View
18.
Martinez C, Espinosa-Ruiz A, de Lucas M, Bernardo-Garcia S, Franco-Zorrilla J, Prat S
. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J. 2018; 37(23).
PMC: 6276883.
DOI: 10.15252/embj.201899552.
View
19.
Neuhaus G, Bowler C, Kern R, Chua N
. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993; 73(5):937-52.
DOI: 10.1016/0092-8674(93)90272-r.
View
20.
Casal J, Balasubramanian S
. Thermomorphogenesis. Annu Rev Plant Biol. 2019; 70:321-346.
DOI: 10.1146/annurev-arplant-050718-095919.
View