» Articles » PMID: 32103019

The Epidermis Coordinates Thermoresponsive Growth Through the PhyB-PIF4-auxin Pathway

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Feb 28
PMID 32103019
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

In plants, an elevation in ambient temperature induces adaptive morphological changes including elongated hypocotyls, which is predominantly regulated by a bHLH transcription factor, PIF4. Although PIF4 is expressed in all aerial tissues including the epidermis, mesophyll, and vascular bundle, its tissue-specific functions in thermomorphogenesis are not known. Here, we show that epidermis-specific expression of PIF4 induces constitutive long hypocotyls, while vasculature-specific expression of PIF4 has no effect on hypocotyl growth. RNA-Seq and qRT-PCR analyses reveal that auxin-responsive genes and growth-related genes are highly activated by epidermal, but not by vascular, PIF4. Additionally, inactivation of epidermal PIF4 or auxin signaling, and overexpression of epidermal phyB suppresses thermoresponsive growth, indicating that epidermal PIF4-auxin pathways are essential for the temperature responses. Further, we show that high temperatures increase both epidermal PIF4 transcription and the epidermal PIF4 DNA-binding ability. Taken together, our study demonstrates that the epidermis regulates thermoresponsive growth through the phyB-PIF4-auxin pathway.

Citing Articles

How Do Arabidopsis Seedlings Sense and React to Increasing Ambient Temperatures?.

Feher A, Hamid R, Magyar Z Plants (Basel). 2025; 14(2).

PMID: 39861601 PMC: 11769069. DOI: 10.3390/plants14020248.


Mining Candidate Genes for Maize Tassel Spindle Length Based on a Genome-Wide Association Analysis.

Cao X, Lu H, Zhao Z, Lian Y, Chen H, Yu M Genes (Basel). 2024; 15(11).

PMID: 39596613 PMC: 11593375. DOI: 10.3390/genes15111413.


UV-B increases active phytochrome B to suppress thermomorphogenesis and enhance UV-B stress tolerance at high temperatures.

Hwang G, Lee T, Park J, Paik I, Lee N, Kim Y Plant Commun. 2024; 6(1):101142.

PMID: 39390743 PMC: 11783897. DOI: 10.1016/j.xplc.2024.101142.


SlCPK27 cross-links SlHY5 and SlPIF4 in brassinosteroid-dependent photo- and thermo-morphogenesis in tomato.

Zhu C, Hu Z, Hu C, Ma H, Zhou J, Xia X Proc Natl Acad Sci U S A. 2024; 121(36):e2403040121.

PMID: 39190354 PMC: 11388283. DOI: 10.1073/pnas.2403040121.


MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition.

Verma N, Singh D, Mittal L, Banerjee G, Noryang S, Sinha A Plant Cell. 2024; 36(10):4535-4556.

PMID: 39102893 PMC: 11449107. DOI: 10.1093/plcell/koae223.


References
1.
Quint M, Delker C, Franklin K, Wigge P, Halliday K, van Zanten M . Molecular and genetic control of plant thermomorphogenesis. Nat Plants. 2016; 2:15190. DOI: 10.1038/nplants.2015.190. View

2.
Gray W, Ostin A, Sandberg G, Romano C, Estelle M . High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A. 1998; 95(12):7197-202. PMC: 22781. DOI: 10.1073/pnas.95.12.7197. View

3.
Zhu J, Oh E, Wang T, Wang Z . TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nat Commun. 2016; 7:13692. PMC: 5171658. DOI: 10.1038/ncomms13692. View

4.
Crawford A, McLachlan D, Hetherington A, Franklin K . High temperature exposure increases plant cooling capacity. Curr Biol. 2012; 22(10):R396-7. DOI: 10.1016/j.cub.2012.03.044. View

5.
Koini M, Alvey L, Allen T, Tilley C, Harberd N, Whitelam G . High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol. 2009; 19(5):408-13. DOI: 10.1016/j.cub.2009.01.046. View