Machine Learning Tools Advance Biophysics
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Schlick T, Portillo-Ledesma S
. Biomolecular modeling thrives in the age of technology. Nat Comput Sci. 2021; 1(5):321-331.
PMC: 8378674.
DOI: 10.1038/s43588-021-00060-9.
View
2.
Barcenas M, Bocci F, Nie Q
. Tipping points in epithelial-mesenchymal lineages from single-cell transcriptomics data. Biophys J. 2024; 123(17):2849-2859.
PMC: 11393678.
DOI: 10.1016/j.bpj.2024.03.021.
View
3.
Gorin G, Carilli M, Chari T, Pachter L
. Spectral neural approximations for models of transcriptional dynamics. Biophys J. 2024; 123(17):2892-2901.
PMC: 11393700.
DOI: 10.1016/j.bpj.2024.04.034.
View
4.
Karolak A, Urbaniak K, Monastyrskyi A, Duckett D, Branciamore S, Stewart P
. Structure-independent machine-learning predictions of the CDK12 interactome. Biophys J. 2024; 123(17):2910-2920.
PMC: 11393676.
DOI: 10.1016/j.bpj.2024.05.017.
View
5.
Verma A, Ray K, Bodick M, Kinz-Thompson C, Gonzalez Jr R
. Increasing the accuracy of single-molecule data analysis using tMAVEN. Biophys J. 2024; 123(17):2765-2780.
PMC: 11393709.
DOI: 10.1016/j.bpj.2024.01.022.
View