» Articles » PMID: 39168099

The SGLT2 Inhibitor Dapagliflozin Ameliorates Renal Fibrosis in Hyperuricemic Nephropathy

Overview
Journal Cell Rep Med
Publisher Cell Press
Date 2024 Aug 21
PMID 39168099
Authors
Affiliations
Soon will be listed here.
Abstract

Hyperuricemic nephropathy (HN) is a global metabolic disorder characterized by uric acid (UA) metabolism dysfunction, resulting in hyperuricemia (HUA) and tubulointerstitial fibrosis (TIF). Sodium-dependent glucose transporter 2 inhibitor, dapagliflozin, has shown potential in reducing serum UA levels in patients with chronic kidney disease (CKD), though its protective effects against HN remain uncertain. This study investigates the functional, pathological, and molecular changes in HN through histological, biochemical, and transcriptomic analyses in patients, HN mice, and UA-stimulated HK-2 cells. Findings indicate UA-induced tubular dysfunction and fibrotic activation, which dapagliflozin significantly mitigates. Transcriptomic analysis identifies estrogen-related receptor α (ERRα), a downregulated transcription factor in HN. ERRα knockin mice and ERRα-overexpressed HK-2 cells demonstrate UA resistance, while ERRα inhibition exacerbates UA effects. Dapagliflozin targets ERRα, activating the ERRα-organic anion transporter 1 (OAT1) axis to enhance UA excretion and reduce TIF. Furthermore, dapagliflozin ameliorates renal fibrosis in non-HN CKD models, underscoring the therapeutic significance of the ERRα-OAT1 axis in HN and CKD.

Citing Articles

Tigulixostat Alleviates Hyperuricemic Nephropathy by Promoting M2 Macrophage Polarization.

Xue L, Tao Q, Chang H, Yan S, Wang L, Zhao Z J Inflamm Res. 2025; 18():17-30.

PMID: 39780982 PMC: 11705990. DOI: 10.2147/JIR.S500101.


Metal-Dependent Cell Death in Renal Fibrosis: Now and in the Future.

Li T, Yu C Int J Mol Sci. 2025; 25(24.

PMID: 39769044 PMC: 11678559. DOI: 10.3390/ijms252413279.


Insights into renal damage in hyperuricemia: Focus on renal protection (Review).

Yang H, Ying J, Zu T, Meng X, Jin J Mol Med Rep. 2024; 31(3.

PMID: 39717954 PMC: 11711934. DOI: 10.3892/mmr.2024.13424.

References
1.
Lin N, Homan K, Robinson S, Kolesky D, Duarte N, Moisan A . Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019; 116(12):5399-5404. PMC: 6431199. DOI: 10.1073/pnas.1815208116. View

2.
Fathallah-Shaykh S, Cramer M . Uric acid and the kidney. Pediatr Nephrol. 2013; 29(6):999-1008. DOI: 10.1007/s00467-013-2549-x. View

3.
Pou Casellas C, Jansen K, Rookmaaker M, Clevers H, Verhaar M, Masereeuw R . Regulation of solute carriers oct2 and OAT1/3 in the kidney: a phylogenetic, ontogenetic, and cell dynamic perspective. Physiol Rev. 2021; 102(2):993-1024. DOI: 10.1152/physrev.00009.2021. View

4.
Crevet L, Vanacker J . Regulation of the expression of the estrogen related receptors (ERRs). Cell Mol Life Sci. 2020; 77(22):4573-4579. PMC: 11104921. DOI: 10.1007/s00018-020-03549-0. View

5.
Eraly S, Hamilton B, Nigam S . Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun. 2002; 300(2):333-42. DOI: 10.1016/s0006-291x(02)02853-x. View