A Prediction Model for Moderate to Severe Acute Kidney Injury in People with Heart Failure
Overview
Overview
Journal
Mil Med Res
Publisher
Biomed Central
Specialty
Emergency Medicine
Date
2024 Aug 20
PMID
39164767
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Citing Articles
Gu Q, Qi Y, Xiong Y, Ma X, Lyu J, Yang W BMC Cardiovasc Disord. 2025; 25(1):133.
PMID: 40000938 PMC: 11853194. DOI: 10.1186/s12872-025-04569-z.
References
1.
Liu W, Liu X, Jiang T, Wang M, Huang Y, Huang Y
. Using a machine learning model to predict the development of acute kidney injury in patients with heart failure. Front Cardiovasc Med. 2022; 9:911987.
PMC: 9512707.
DOI: 10.3389/fcvm.2022.911987.
View
2.
Damman K, Valente M, Voors A, OConnor C, Van Veldhuisen D, Hillege H
. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2013; 35(7):455-69.
DOI: 10.1093/eurheartj/eht386.
View
3.
Hong C, Sun Z, Hao Y, Dong Z, Gu Z, Huang Z
. Identifying Patients With Heart Failure Who Are Susceptible to De Novo Acute Kidney Injury: Machine Learning Approach. JMIR Med Inform. 2022; 10(10):e37484.
PMC: 9617187.
DOI: 10.2196/37484.
View
4.
Yang L, Xing G, Wang L, Wu Y, Li S, Xu G
. Acute kidney injury in China: a cross-sectional survey. Lancet. 2015; 386(10002):1465-71.
DOI: 10.1016/S0140-6736(15)00344-X.
View
5.
Ronco C, Bellomo R, Kellum J
. Acute kidney injury. Lancet. 2019; 394(10212):1949-1964.
DOI: 10.1016/S0140-6736(19)32563-2.
View