» Articles » PMID: 39164767

A Prediction Model for Moderate to Severe Acute Kidney Injury in People with Heart Failure

Citing Articles

A nomogram to predict congestive heart failure in patients with acute kidney injury: a retrospective study based on the MIMIC-III database.

Gu Q, Qi Y, Xiong Y, Ma X, Lyu J, Yang W BMC Cardiovasc Disord. 2025; 25(1):133.

PMID: 40000938 PMC: 11853194. DOI: 10.1186/s12872-025-04569-z.

References
1.
Liu W, Liu X, Jiang T, Wang M, Huang Y, Huang Y . Using a machine learning model to predict the development of acute kidney injury in patients with heart failure. Front Cardiovasc Med. 2022; 9:911987. PMC: 9512707. DOI: 10.3389/fcvm.2022.911987. View

2.
Damman K, Valente M, Voors A, OConnor C, Van Veldhuisen D, Hillege H . Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2013; 35(7):455-69. DOI: 10.1093/eurheartj/eht386. View

3.
Hong C, Sun Z, Hao Y, Dong Z, Gu Z, Huang Z . Identifying Patients With Heart Failure Who Are Susceptible to De Novo Acute Kidney Injury: Machine Learning Approach. JMIR Med Inform. 2022; 10(10):e37484. PMC: 9617187. DOI: 10.2196/37484. View

4.
Yang L, Xing G, Wang L, Wu Y, Li S, Xu G . Acute kidney injury in China: a cross-sectional survey. Lancet. 2015; 386(10002):1465-71. DOI: 10.1016/S0140-6736(15)00344-X. View

5.
Ronco C, Bellomo R, Kellum J . Acute kidney injury. Lancet. 2019; 394(10212):1949-1964. DOI: 10.1016/S0140-6736(19)32563-2. View