6.
Prokocimer M, Molchadsky A, Rotter V
. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood. 2017; 130(6):699-712.
PMC: 5659817.
DOI: 10.1182/blood-2017-02-763086.
View
7.
Motlagh A, Mahdevar M, Mirzaei S, Entezari M, Hashemi M, Hushmandi K
. Introduction of mutant TP53 related genes in metabolic pathways and evaluation their correlation with immune cells, drug resistance and sensitivity. Life Sci. 2022; 303:120650.
DOI: 10.1016/j.lfs.2022.120650.
View
8.
Daver N, Wei A, Pollyea D, Fathi A, Vyas P, DiNardo C
. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J. 2020; 10(10):107.
PMC: 7599225.
DOI: 10.1038/s41408-020-00376-1.
View
9.
Dekker S, Rea D, Cayuela J, Arnhardt I, Leonard J, Heuser M
. Using Measurable Residual Disease to Optimize Management of AML, ALL, and Chronic Myeloid Leukemia. Am Soc Clin Oncol Educ Book. 2023; 43:e390010.
DOI: 10.1200/EDBK_390010.
View
10.
Latif A, Newcombe A, Li S, Gilroy K, Robertson N, Lei X
. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun. 2021; 12(1):241.
PMC: 7801601.
DOI: 10.1038/s41467-020-20378-8.
View
11.
Yan B, Claxton D, Huang S, Qiu Y
. AML chemoresistance: The role of mutant TP53 subclonal expansion and therapy strategy. Exp Hematol. 2020; 87:13-19.
PMC: 7416446.
DOI: 10.1016/j.exphem.2020.06.003.
View
12.
Brinton L, Zhang P, Williams K, Canfield D, Orwick S, Sher S
. Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol. 2020; 13(1):139.
PMC: 7574303.
DOI: 10.1186/s13045-020-00973-4.
View
13.
Popescu B, Stahlhut C, Tarver T, Wishner S, Lee B, Peretz C
. Allosteric SHP2 inhibition increases apoptotic dependency on BCL2 and synergizes with venetoclax in FLT3- and KIT-mutant AML. Cell Rep Med. 2023; 4(11):101290.
PMC: 10694768.
DOI: 10.1016/j.xcrm.2023.101290.
View
14.
Kojima K, Konopleva M, Samudio I, Shikami M, Cabreira-Hansen M, McQueen T
. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005; 106(9):3150-9.
PMC: 1895324.
DOI: 10.1182/blood-2005-02-0553.
View
15.
Zhang J, Sun W, Kong X, Zhang Y, Yang H, Ren C
. Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proc Natl Acad Sci U S A. 2019; 116(48):24259-24267.
PMC: 6883818.
DOI: 10.1073/pnas.1913919116.
View
16.
Barnoud T, Indeglia A, Murphy M
. Shifting the paradigms for tumor suppression: lessons from the p53 field. Oncogene. 2021; 40(25):4281-4290.
PMC: 8238873.
DOI: 10.1038/s41388-021-01852-z.
View
17.
Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger F, Kohnke T
. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2015; 30(2):484-91.
DOI: 10.1038/leu.2015.214.
View
18.
Barwe S, Kisielewski A, Bonvini E, Muth J, Davidson-Moncada J, Kolb E
. Efficacy of Flotetuzumab in Combination with Cytarabine in Patient-Derived Xenograft Models of Pediatric Acute Myeloid Leukemia. J Clin Med. 2022; 11(5).
PMC: 8911345.
DOI: 10.3390/jcm11051333.
View
19.
Hales E, Taub J, Matherly L
. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2013; 26(1):149-61.
DOI: 10.1016/j.cellsig.2013.09.021.
View
20.
Konopleva M, Rollig C, Cavenagh J, Deeren D, Girshova L, Krauter J
. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial. Blood Adv. 2022; 6(14):4147-4156.
PMC: 9327534.
DOI: 10.1182/bloodadvances.2021006303.
View